Advertisement

Preparation and Properties of Monomethoxypoly(Ethylene Glycol)-Modified Enzymes for Therapeutic Applications

  • F. M. Veronese
  • P. Caliceti
  • O. Schiavon
  • L. Sartore
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

The therapeutic value of enzymes as drugs would be considerably increased if drawbacks such as immunogenicity and antigenicity, rapid clearance from circulation, difficulty in targeting, instability, and inadequate supply were overcome. Genetic engineering seems to be promising in obtaining large amounts of useful enzymes, although doubts exist concerning the correct folding of expressed proteins.1 Nevertheless, the disadvantages of limited tissue distribution and rapid clearance from circulation of enzymes remain a major problem. Moreover, genetic methods cannot be used for producing enzymes carrying post-transcriptional modifications, but with this aim the so-called transgenic animal technology appears to be quite promising. For these reasons, alternative strategies are being actively investigated in several laboratories. These strategies include surface modification of the enzymes by chemical modification or compartmentalization of the enzyme onto complex structures which isolate it from body cells, tissues, and proteolytic enzymes.23

Keywords

Protein Modification Affinity Constant Rapid Clearance Guanidinium Chloride Radioactive Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. O. Thorner, J. Reschke, J. Chitwood, A. D. Rogol, R. Furlanetto, J. River, W. Vale, and R. M. Blizzard, N. Engl. J. Med. 312, 994 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    A. K. Larsen, R. J. Linhardt, D. Topper, M. Klein, and R. Langer, Artif. Organs 8, 198 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Bourget and T. M. S. Chang, FEBS Lett. 180, 5 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    R. G. Melton, C. N. Wiblin, A. Baskerville, R. L. Foster, and R. E. Sherwood, Biochem. Pharmacol. 36, 113 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    A. V. Maksimenko and V. P. Torchilin, Thrombosis Res. 38, 289 (1985).CrossRefGoogle Scholar
  6. 6.
    K. Wong, L. G. Cleland, and M. J. Poznanski, Agents Actions 10, 231 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Geiger, B. U. von Spect, and R. Arnon, Eur. J. Biochem. 73, 141 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    K. G. Raghavan and U. Tarachand, FEBS Lett. 195, 101 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Maeda, T. Matsumoto, T. Konno, K. Iwai, and M. Veda, J. Prot. Chem. 3, 181 (1984).CrossRefGoogle Scholar
  10. 10.
    A. Abuchowski, J. R. McCoy, N. C. Palczuk, T. Van Es, and F. F. Davis, J. Biol. Chem. 252, 3582 (1977).PubMedGoogle Scholar
  11. 11.
    C. O. Beauchamp, S. L. Gonias, D. P. Menapace, and S. V Pizzo, Anal. Biochem. 131, 25 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Kamisaki, H. Wada, T. Yagura, H. Nishimura, A. Matsushima, and Y. Inada, Gann 73, 470 (1982).PubMedGoogle Scholar
  13. 13.
    M. Leonard and E. Dellacherie, Biochim. Biophys. Acta 791, 219 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Abuchowski and F. F Davis, in: Enzymes as Drugs (J. S. Holcenberg and J. Roberts, eds.), p. 367, Wiley, New York (1981).Google Scholar
  15. 15.
    F. Fuertges and A. Abuchowski, J. Controlled Release 11, 139 (1990).CrossRefGoogle Scholar
  16. 16.
    Y. Inada, K. Takahashi, T. Yoshimoto, Y Kodera, A. Matsushima, and Y. Saito, Trends Biotechnol. 6, 131 (1988).CrossRefGoogle Scholar
  17. 17.
    F. M. Veronese, R. Largajolli, C. Visco, P Ferruti, and A. Miucci, Appl. Biochem. Biotechnol. 11, 269 (1985).CrossRefGoogle Scholar
  18. 18.
    F M. Veronese, L. Sartore, P. Caliceti, and O. Schiavon, J. Bioactive Compat. Polymers 5, 167 (1990).CrossRefGoogle Scholar
  19. 19.
    K. Yoshinga and J. M. Harris, J. Bioactive Compat. Polymers 4, 17 (1989).CrossRefGoogle Scholar
  20. 20.
    K. Yoshinaga, S. G. Shafer, and J. M. Harris, J. Bioactive Compat. Polymers 2, 49 (1987).CrossRefGoogle Scholar
  21. 21.
    F. M. Veronese, R. Largajolli, E. Boccu, C. A. Benassi, and O. Schiavon, Appl. Biochem. Biotechnol. 11, 141 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    L. Sartore, P Caliceti, O. Schiavon, and F. M. Veronese, Appl. Biochem. Biotechnol. 27, 45 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Sartore, unpublished results.Google Scholar
  24. 24.
    S. L. Snyder and P Z. Sobocinsky, Anal. Biochem. 64, 248 (1975).CrossRefGoogle Scholar
  25. 25.
    A. F S. A. Habeeb, Anal. Biochem. 14, 328 (1966).PubMedCrossRefGoogle Scholar
  26. 26.
    P. McGoff, A. C. Baziotis, and R. Maskiewics, Chem. Pharm. Bull. 36, 3079 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    F. M. Veronese, P. Caliceti, A. Pastorino, O. Schiavon, L. Sartore, L. Banci, and L. Monsu Scolaro, J. Controlled Release 10, 145 (1989).CrossRefGoogle Scholar
  28. 28.
    J. M. Harris, J. Macromol. Sci., Rev. Polym. Phys. Chem. C 25, 325 (1985).CrossRefGoogle Scholar
  29. 29.
    L. Banci, I. Bertini, P. Caliceti, L. Monsu Scolaro, O. Schiavon, and F. M. Veronese, J. Inorganic Biochem. 39, 149 (1990).CrossRefGoogle Scholar
  30. 30.
    L. Banci, I. Bertini, C. Luchinat, and A. Scozzafava, J. Am. Chem. Soc. 109, 2328 (1987).CrossRefGoogle Scholar
  31. 31.
    D. Cocco, L. Rossi, D. Barra, F. Bossa, and G. Rotilio, FEBS Lett. 150, 303 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    B. N. Glukhof, A. P. Jerusalimsky, V. M. Canter, and R. I. Salganik, Arch. Neurol. 33, 598 (1990).CrossRefGoogle Scholar
  33. 33.
    P. Caliceti, O. Schiavon, F. M. Veronese, and I. M. Chaiken, J. Molecular Recognition 3, 89 (1990).CrossRefGoogle Scholar
  34. 34.
    C. Grandi, unpublished results.Google Scholar
  35. 35.
    F. M. Veronese, L. Sartore, O. Schiavon, and P. Caliceti, Ann. N.Y. Acad. Sci. 613, 468 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    A. M. Klibanov, Anal. Biochem. 93, 1 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    H. E. Swaisgood and I. M. Chaiken, in: Analytical Affinity Chromatography (I. M. Chaiken, ed.), p. 65, CRC Press, Boca Raton (1987).Google Scholar
  38. 38.
    P. Caliceti, F. Fassina, and I. M. Chaiken, Appl. Biochem. Biotechnol. 16, 119 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    P. Caliceti, O. Schiavon, A. Mocali, and F. M. Veronese, Il Farmaco 44, 711 (1989).PubMedGoogle Scholar
  40. 40.
    J. S. Beekman, R. L. Minor Jr., C. W. White, J. E. Repine, G. M. Rosen, and B. A. Freeman, J. Biol. Chem. 263, 6884 (1988).Google Scholar
  41. 41.
    A. Conforti, L. Franco, R. Milanino, G. P. Velo, E. Boccu, R. Largajolli, O. Schiavon, and F. M. Veronese, Pharmacol. Res. Commun. 19, 287 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    F. M. Veronese, A. Conforti, and G. P Velo, in: New Developments in Antirheumatic Therapy (K. D. Rainsford and G. P Velo, eds.), Vol. 3, p. 305, Kluwer Academic Publishers, Dordrecht (1989).CrossRefGoogle Scholar
  43. 43.
    E. Boccu, G. P. Velo, and F M. Veronese, Pharmacol. Res. Commun. 14, 113 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Conforti, P. Caliceti, L. Sartore, O. Schiavon, F. M. Veronese, and G. P. Velo, Pharmacol. Res. 23, 51 (1990).CrossRefGoogle Scholar
  45. 45.
    T. Yoshimoto, H. Nishimura, Y. Saito, K. Sakurai, Y. Kamisaki, H. Wada, M. Sako, G. Tsijino, and Y. Inada, Jpn. J. Cancer Res. (Gann) 77, 1264 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • F. M. Veronese
    • 1
  • P. Caliceti
    • 1
  • O. Schiavon
    • 1
  • L. Sartore
    • 1
  1. 1.Department of Pharmaceutical Sciences (Centro di Studio di Chimica del Farmaco e dei Prodotti Biologicamente Attivi del CNR)University of PaduaPaduaItaly

Personalised recommendations