Advertisement

PEG-Modified Protein Hybrid Catalyst

  • Kohji Yoshinaga
  • Hitoshi Ishida
  • Takashi Sagawa
  • Katsutoshi Ohkubo
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Chemical modification of proteins by attachment of poly(ethylene glycol) (or PEG) is of much interest in medical applications,1,2 enzymatic organic synthesis,3 and affinity separations.4 Some of the desired properties obtained by PEG modification are reduced antigenicity, control of partitioning of affinity ligands, and solubility in organic solvents.

Keywords

Styrene Oxide Hybrid Catalyst Phenyl Ester Phase Transfer Agent Binding Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abuchowski, T. van Es, N. C. Palczuk, and F. F. Davis, J. Biol. Chem. 252, 3582 (1977).PubMedGoogle Scholar
  2. 2.
    Y. Inada, K. Takahashi, T. Yoshimoto, A. Ajima, A. Matsushima, and Y. Saito, Trends Biotechnol. 4, 190 (1986).CrossRefGoogle Scholar
  3. 3.
    Y. Inada, K. Takahashi, T. Yoshimoto, Y. Kodera, A. Matsushima, and Y. Saito, Trends Biotechnol. 6, 131 (1988).CrossRefGoogle Scholar
  4. 4.
    J. M. Harris and Y. Yalpani, in: Partitioning in Aqueous Two-Phase Systems (H. Walter, D. E. Brooks, and D. Fisher, eds.), Academic Press, New York (1985).Google Scholar
  5. 5.
    K. Ohkubo and K. Takano, J. Coord. Chem. 14, 169 (1985).CrossRefGoogle Scholar
  6. 6.
    K. Ohkubo, M. Iwabuchi, and K. Takano, J. Mol. Catal. 32, 285 (1985).CrossRefGoogle Scholar
  7. 7.
    K. Ohkubo, T. Sagawa, M. Kuwata, T. Hata, and H. Ishida, J. Chem. Soc, Chem. Commun., 352 (1989).Google Scholar
  8. 8.
    T. Peter, Jr., Adv. Protein Chem. 37, 161 (1985).CrossRefGoogle Scholar
  9. 9.
    M. E. Wilson and G. W. Whitesides, J. Am. Chem. Soc. 100, 306 (1978).CrossRefGoogle Scholar
  10. 10.
    T. Kokubo, T. Sugimoto, T. Uchida, S. Tanimoto, and M. Okano, J. Chem. Soc, Chem. Commun., 769 (1983).Google Scholar
  11. 11.
    A. Harriman and G. Porter, J. Chem. Soc, Faraday Trans. 275, 1532 (1979).Google Scholar
  12. 12.
    N. Datta-Cupta, D. Malakar, and J. Dozier, Res. Commun. Chem. Pathol. Pharm. 63, 289 (1989).Google Scholar
  13. 13.
    K. Ohkubo, H. Ishida, and T. Sagawa, J. Mol. Catal. 53, L5 (1989).CrossRefGoogle Scholar
  14. 14.
    A. Abuchowski, G. M. Kazo, C. R. Verhoest, T. Van Es, D. Kafkewitz, M. L. Nucci, A. T. Viau, and F. F. Davis, Cancer Biochem. Biophys. 7, 175 (1984).PubMedGoogle Scholar
  15. 15.
    A. F. S. A. Habeeb, Anal. Biochem. 14, 328 (1966).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Yoshinaga, S. G. Shafer, and J. M. Harris, J. Bioact. Compatible Polym. 2, 49 (1987).CrossRefGoogle Scholar
  17. 17.
    K. Yoshinaga and J. M. Harris, J. Bioact. Compatible Polym. 4, 17 (1989).CrossRefGoogle Scholar
  18. 18.
    T. Foster, Ann. Phys. (Leipzig) 2, 55 (1948).Google Scholar
  19. 19.
    B. Honore and A. O. Pedersen, Biochem. J. 258, 199 (1989).PubMedGoogle Scholar
  20. 20.
    J. M. Brown, Federation Proc. 35, 2141 (1976).Google Scholar
  21. 21.
    K. Yoshinaga, N. Itoh, and T. Kito, Polymer J. 23, 65 (1991).CrossRefGoogle Scholar
  22. 22.
    R. H. Holm, Chem. Rev. 87, 1401 (1987).CrossRefGoogle Scholar
  23. 23.
    J. Biggs, N. B. Chapman, and V. Wray, J. Chem. Soc (B) 71 (1971).Google Scholar
  24. 24.
    R. Annuziata, M. Cinquini, and F. Cozzi, J. Chem. Soc., Perkin Trans. 1, 1687 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kohji Yoshinaga
    • 1
  • Hitoshi Ishida
    • 2
  • Takashi Sagawa
    • 2
  • Katsutoshi Ohkubo
    • 2
  1. 1.Faculty of EngineeringKyushu Institute of TechnologySensui, Tobata-ku, Kitakyushu 804Japan
  2. 2.Faculty of EngineeringKumamoto UniversityKurokami, Kumamoto 860Japan

Personalised recommendations