Aqueous Two-Phase Partitioning on an Industrial Scale

  • Folke Tjerneld
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Aqueous polymer two-phase systems are increasingly being used in biochemistry and cell biology for the separation of macromolecules, membranes, cell organelles, and cells.1,2 The great interest in aqueous phase partitioning is due to the unique separation properties of the systems and the mild conditions during the separation process. The unique properties of the systems make them also very interesting for large-scale industrial applications. In the biotechnical industry this technique is starting to be used for large-scale enzyme extractions.3,4 Many applications of aqueous polymer two-phase systems in biotechnology are currently being explored, both for separations of biomolecules, cell organelles, and cells, and for bioconversions.

Keywords

Polymer Concentration Phase System Polymer Molecular Weight Bottom Phase Binodial Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.-A. Albertsson, Partition of Cell Particles and Macromolecules, 3rd ed., Wiley, New York (1986).Google Scholar
  2. 2.
    H. Walter, D. E. Brooks, and D. Fisher (eds.), Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology, Academic Press, New York (1985).Google Scholar
  3. 3.
    M.-R. Kula, K. H. Kroner, and H. Hustedt, in: Advances in Biochemical Engineering (A. Fiechter, ed.), Vol. 24, p. 73, Springer, Berlin (1982).Google Scholar
  4. 4.
    H. Hustedt, K. H. Kroner, and M.-R. Kula, in: Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology (H. Walter, D. E. Brooks, and D. Fisher, eds.), p. 529, Academic Press, New York (1985).Google Scholar
  5. 5.
    K. H. Kroner, H. Hustedt, and M.-R. Kula, Process Biochem. 19, 170 (1984).Google Scholar
  6. 6.
    D. E. Brooks, K. A. Sharp, and D. Fisher, in: Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology (H. Walter, D E. Brooks, and D. Fisher, eds.), p. 11, Academic Press, New York (1985).Google Scholar
  7. 7.
    Å. Gustafsson, H. Wennerström, and F. Tjerneld, Polymer 27, 1768 (1986).CrossRefGoogle Scholar
  8. 8.
    Å. Sjöberg, G. Karlström, and F. Tjerneld, Macromolecules 22, 4512 (1989).CrossRefGoogle Scholar
  9. 9.
    J. N. Baskir, T. A. Hatton, and U. W. Suter, J. Phys. Chem. 93, 2111 (1989).CrossRefGoogle Scholar
  10. 10.
    J. N. Baskir, T. A. Hatton, and U. W. Suter, Biotechnol. Bioeng. 34, 541 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    C. A. Haynes, R. A. Beynon, R. S. King, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem. 93, 5612 (1989).CrossRefGoogle Scholar
  12. 12.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY (1953).Google Scholar
  13. 13.
    G. Karlström, J. Phys. Chem. 89, 4962 (1985).CrossRefGoogle Scholar
  14. 14.
    S. Saeki, N. Kuwahara, M. Nakata, and M. Kaneko, Polymer 17, 685 (1976).CrossRefGoogle Scholar
  15. 15.
    Å. Sjöberg and G. Karlström, Macromolecules 22, 1325 (1989).CrossRefGoogle Scholar
  16. 16.
    K. H. Kroner, H. Hustedt, and M.-R. Kula, Biotechnol. Bioeng. 24, 1015 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    F. Tjerneld, I. Persson, P-Å. Albertsson, and B. Hahn-Hägerdal, Biotechnol. Bioeng. 27, 1036 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    F. Tjerneld, I. Persson, P.-Å. Albertsson, and B. Hahn-Hägerdal, Biotechnol. Bioeng. 27, 1044 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Tjerneld, S. Berner, A. Cajarville, and G. Johansson, Enzyme Microbiol. Technol. 8, 417 (1986).CrossRefGoogle Scholar
  20. 20.
    H. Walter and E. J. Krob, J. Chromatogr. 441, 261 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Sturesson, F. Tjerneld, and G. Johansson, Appl. Biochem. Biotechnol. 26, 281 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Kaul and B. Mattiasson, Appl. Microbiol. Biotechnol. 24, 259 (1986).CrossRefGoogle Scholar
  23. 23.
    D. C. Szlag and K. A. Giuliano, Biotechnol. Techniques 2, 277 (1988).CrossRefGoogle Scholar
  24. 24.
    E. Tjerneld, in: Separations Using Aqueous Phase Systems (D. Fisher and I. A. Sutherland, eds.), p. 429, Plenum Press, New York (1989).CrossRefGoogle Scholar
  25. 25.
    A. L. Nguyen, S. Grothe, and J. Luong, Appl. Microbiol. Biotechnol. 27, 341 (1988).CrossRefGoogle Scholar
  26. 26.
    A. Kokkoris, J. B. Blair, and J. A. Shaeiwitz, Biochim. Biophys. Acta 966, 176 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Hughes and C. R. Lowe, Enzyme Microbiol. Technol. 10, 115 (1988).CrossRefGoogle Scholar
  28. 28.
    G. Johansson, Biochim. Biophys. Acta 221, 387 (1970).PubMedCrossRefGoogle Scholar
  29. 29.
    P.-Å. Albertsson, A. Cajarville, D. E. Brooks, and F. Tjerneld, Biochim. Biophys. Acta 926, 87 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    G. Johansson, A. Hartman, and P.-Å. Albertsson, Eur. J. Biochem. 33, 379 (1973).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Johansson, in: Methods in Enzymology (W B. Jakoby, ed.), Vol. 104, p. 356, Academic Press, New York (1984).Google Scholar
  32. 32.
    H. Hustedt, K. H. Kroner, H. Schütte, and M.-R. Kula, in: Enzyme Technology, 3rd Rothenburger Fermentation Symposium (R. M. Lafferty, ed.), p. 135, Springer, Berlin (1983).Google Scholar
  33. 33.
    H. Hustedt, K. H. Kroner, U. Menge, and M.-R. Kula, Trends Biotechnol. 3, 139 (1985).CrossRefGoogle Scholar
  34. 34.
    K. H. Kroner, H. Hustedt, S. Granda, and M.-R. Kula, Biotechnol. Bioeng. 20, 1967 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Hustedt, K. H. Kroner, and M.-R. Kula, in: Proc. 3rd Eur. Congr. Biotechnol., Vol. 1, p. 597, Verlag Chemie, Weinheim (1984).Google Scholar
  36. 36.
    A. Veide, T. Lindbäck, and S.-O. Enfors, Enzyme Microbiol. Technol. 6, 325 (1984).CrossRefGoogle Scholar
  37. 37.
    H. Hustedt, B. Börner, K. H. Kroner, and N. Papamichael, Biotechnol. Techniques 1, 49 (1987).CrossRefGoogle Scholar
  38. 38.
    K. H. Kroner, H. Schütte, W. Stach, and M.-R. Kula, J. Chem. Technol. Biotechnol. 32, 130 (1982).CrossRefGoogle Scholar
  39. 39.
    H. Hustedt, Biotechnol. Lett. 8, 791 (1986).CrossRefGoogle Scholar
  40. 40.
    J. Vernau and M.-R. Kula, Biotechnol. Appl. Biochem. 12, 397 (1990).Google Scholar
  41. 41.
    H. Hustedt, unpublished results.Google Scholar
  42. 42.
    W. Hummel, H. Schütte, and M.-R. Kula, in: Enzyme Engineering VII (A. J. Laskin, G. T. Tsao, and L. B. Wingard, eds.), Ann. N.Y. Acad. Sci. 434, 194 (1984).CrossRefGoogle Scholar
  43. 43.
    U. Menge, M. Morr, U. Mayr, and M.-R. Kula, J. Appl. Biochem. 5, 75 (1983).PubMedGoogle Scholar
  44. 44.
    F. Tjerneld, G. Johansson, and M. Joelsson, Biotechnol. Bioeng. 30, 809 (1987).PubMedCrossRefGoogle Scholar
  45. 45.
    G. Johansson and E. Tjerneld, J. Biotechnol. 11, 135 (1989).CrossRefGoogle Scholar
  46. 46.
    A. Cordes and M.-R. Kula, J. Chromatogr. 376, 375 (1986).Google Scholar
  47. 47.
    A. Veide, L. Strandberg, and S.-O. Enfors, Enzyme Microbiol. Technol. 9, 730 (1987).CrossRefGoogle Scholar
  48. 48.
    K. Köhler, L. von Bonsdorff-Lindeberg, and S.-O. Enfors, Enzyme Microbiol. Technol. 11, 730 (1989).CrossRefGoogle Scholar
  49. 49.
    K. Köhler, A. Veide, and S.-O. Enfors, Enzyme Microbiol. Technol. 13, 204 (1991).CrossRefGoogle Scholar
  50. 50.
    S.-O. Enfors, K. Köhler, and A. Veide, Bioseparation 1, 305 (1990).PubMedGoogle Scholar
  51. 51.
    B. Mattiasson and B. Hahn-Hägerdal, in: Immobilized Cells and Organelles (B. Mattiasson, ed.), CRC-Press, Boca Raton, FL (1983).Google Scholar
  52. 52.
    E. Andersson and B. Hahn-Hägerdal, Enzyme Microbiol. Technol. 12, 242 (1990).CrossRefGoogle Scholar
  53. 53.
    R. Wennersten, F. Tjerneld, M. Larsson, and B. Mattiasson, in: Proc. Int. Solvent Extraction Conf. ISEC’83, Denver, p. 506 (1983).Google Scholar
  54. 54.
    M. Larsson, V. Arasaratnam, and B. Mattiasson, Biotechnol. Bioeng. 33, 758 (1989).PubMedCrossRefGoogle Scholar
  55. 55.
    F. Tjerneld, I. Persson, P-Å. Albertsson, and B. Hahn-Hägerdal, Biotechnol. Bioeng. Symp. 15, 419 (1985).Google Scholar
  56. 56.
    E. Andersson, B. Mattiasson, and B. Hahn-Hägerdal, Enzyme Microbiol. Technol. 6, 301 (1984).CrossRefGoogle Scholar
  57. 57.
    Y. L. Yang, H. Hustedt, and M.-R. Kula, Biotechnol. Appl. Biochem. 10, 173 (1988).Google Scholar
  58. 58.
    I. Kühn, Biotechnol. Bioeng. 22, 2393 (1980).CrossRefGoogle Scholar
  59. 59.
    B. Hahn-Hägerdal, B. Mattiasson, and P-Å. Albertsson, Biotechnol. Lett. 3, 53 (1981).CrossRefGoogle Scholar
  60. 60.
    B. Mattiasson, M. Souminen, E. Andersson, L. Häggström, R-Å. Albertsson, and B. Hahn-Hägerdal, in: Enzyme Engineering 6 (I. Chibata, S. Fukui, and L. B. Wingard, eds.), p. 153, Plenum Press, New York (1982).CrossRefGoogle Scholar
  61. 61.
    E. Andersson, A.-C. Johansson, and B. Hahn-Hägerdal, Enzyme Microbiol. Technol. 7, 333 (1985).CrossRefGoogle Scholar
  62. 62.
    E. Andersson and B. Hahn-Hägerdal, Appl. Microbiol. Biotechnol. 29, 329 (1988).CrossRefGoogle Scholar
  63. 63.
    I. Persson, F. Tjerneld, and B. Hahn-Hägerdal, Enzyme Microbiol. Technol. 6, 415 (1984).CrossRefGoogle Scholar
  64. 64.
    I. Persson, F. Tjerneld, and B. Hahn-Hägerdal, Appl. Biochem. Biotechnol. 27, 9 (1991).CrossRefGoogle Scholar
  65. 65.
    I. Persson, H. Stålbrand, F. Tjerneld, and B. Hahn-Hägerdal, Appl. Biochem. Biotechnol. 27, 27 (1991).CrossRefGoogle Scholar
  66. 66.
    I. Persson, F. Tjerneld, and B. Hahn-Hägerdal, Biotechnol. Techniques 3, 265 (1989).CrossRefGoogle Scholar
  67. 67.
    S. Flygare and P.-O. Larsson, Enzyme Microbiol. Technol. 11, 752 (1989).CrossRefGoogle Scholar
  68. 68.
    R. E. Goldstein, J. Chem. Phys. 80, 5340 (1984).CrossRefGoogle Scholar
  69. 69.
    R. Kjellander and E. Florin-Robertsson, J. Chem. Soc, Faraday Trans. 77, 2053 (1981).CrossRefGoogle Scholar
  70. 70.
    M. Andersson and G. Karlström, J. Phys. Chem. 89, 4957 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Folke Tjerneld
    • 1
  1. 1.Department of Biochemistry, Chemical CenterUniversity of LundLundSweden

Personalised recommendations