Poly(Ethylene Glycol) Chemistry pp 73-84 | Cite as
Affinity Partitioning in PEG-Containing Two-Phase Systems
Abstract
Water and other liquids can be divided into two fluid compartments or phases (in direct contact with each other) by using them as solvents for poly(ethylene glycol) (PEG) together with another polymeric substance.1 The incompatibility of polymers in solution that gives rise to this phase separation also has the consequence that the two polymers are accumulated in opposite phases. The difference in polymer structures and polymer concentrations in the phases may cause significant divergences in the solvating properties for high molecular weight substances added in low concentration. When water is used as the solvent, added salts partition more or less evenly between the phases. Proteins, on the other hand, partition more unequally. The actual partition of a substance is described by the partition coefficient, K, which is defined as the ratio of the concentration of partitioned substance between the upper and lower phase. The most popular aqueous two-phase systems for partitioning of biological substances have been the ones containing PEG and dextran.2–4 The top phases of these systems contain, besides water, mainly PEG (5–15%) while the bottom phases contain dextran (10–25%) and some PEG (0.2–2%). Three PEG-dextran systems which have identical phase compositions are shown in Figure 1.
Keywords
Partition Coefficient Free Ligand Target Substance Affinity Ligand Binodal CurvePreview
Unable to display preview. Download preview PDF.
References
- 1.G. Johansson and M. Joelsson, J. Chromatogr. 464, 49 (1989).Google Scholar
- 2.P-Å. Albertsson, Partition of Cell Particles and Macromolecules, 3rd ed., Wiley, New York (1986).Google Scholar
- 3.H. Walter, D. E. Brooks, and D. Fisher (eds.), Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology, Academic Press, Orlando (1985).Google Scholar
- 4.H. Walter and G. Johansson, Anal. Biochem. 155, 215 (1986).CrossRefPubMedGoogle Scholar
- 5.G. Johansson, Biofutur 74, Supplement No. 24, 7 (1988).Google Scholar
- 6.S. D. Flanagan and S. H. Barondes, J. Biol. Chem. 250, 1484 (1975).PubMedGoogle Scholar
- 7.F. Tjerneld and G. Johansson, J. Bioseparation 1, 255 (1990).Google Scholar
- 8.G. Johansson, G. Kopperschläger, and P-Å. Albertsson, Eur. J. Biochem, 131, 589 (1983).CrossRefPubMedGoogle Scholar
- 9.B. Olde and G. Johansson, Neuroscience 15, 1247 (1985).CrossRefPubMedGoogle Scholar
- 10.G. Johansson and V. P Shanbhag, J. Chromatogr. 284, 63 (1984).CrossRefPubMedGoogle Scholar
- 11.C. Erlanson-Albertsson, FEBS Lett. 117, 295 (1980).CrossRefPubMedGoogle Scholar
- 12.G. Kopperschläger, G. Lorenz, and E. Usbeck, J. Chromatogr. 259, 97 (1983).CrossRefPubMedGoogle Scholar
- 13.G. Johansson and M. Joelsson, Enzyme Microbiol. Technol. 7, 629 (1985).CrossRefGoogle Scholar
- 14.H. K. Kroner, A. Cordes, A. Schelper, M. Morr, A. F. Bückmann, and M.-R. Kula, in: Affinity Chromatography and Related Techniques (T. C. J. Gribnau, J. Visser, and R. J. F Nivard, eds.), p. 491, Elsevier, Amsterdam (1982).Google Scholar
- 15.M. Joelsson and G. Johansson, Enzyme Microbiol. Technol. 9, 233 (1987).CrossRefGoogle Scholar
- 16.P. Hubert, E. Dellacherie, J. Neel, and E.-E. Baulieu, FEBS Lett. 65, 169 (1976).CrossRefPubMedGoogle Scholar
- 17.G. Birkenmeier, G. Kopperschläger, and G. Johansson, Biomed. Chromatogr. 1, 64 (1986).CrossRefPubMedGoogle Scholar
- 18.G. Birkenmeier, B. Tschechonien, and G. Kopperschläger, FEBS Lett. 174, 162 (1984).CrossRefPubMedGoogle Scholar
- 19.G. Takerkart, E. Segard, and M. Monsigny, FEBS Lett. 42, 218 (1974).CrossRefPubMedGoogle Scholar
- 20.E. Hofmann and G. Kopperschläger, Methods Enzymol. 90, 49 (1982).CrossRefPubMedGoogle Scholar
- 21.G. Johansson, Mol. Cell. Biochem. 4, 169 (1974).CrossRefPubMedGoogle Scholar
- 22.G. Johansson and M. Andersson, J. Chromatogr. 303, 39 (1984).CrossRefPubMedGoogle Scholar
- 23.G. Johansson and M. Joelsson, J. Chromatogr. 393, 195 (1987).CrossRefPubMedGoogle Scholar
- 24.A. Szöke, M. Joelsson, and G. Johansson, unpublished results.Google Scholar
- 25.G. Johansson and M. Joelsson, Enzyme Microbiol. Technol. 7, 629 (1985).CrossRefGoogle Scholar
- 26.G. Johansson and M. Joelsson, J. Chromatogr. 537, 219 (1991).CrossRefGoogle Scholar
- 27.G. Johansson, in: Protein-Dye Interaction: Developments and Applications (M. A. Vijayalakshmi and O. Bertrand, eds.), p. 165, Elsevier, London (1989).CrossRefGoogle Scholar
- 28.J. N. Baskir, T. A. Hatton, and U. W. Suter, J. Phys. Chem. 93, 969 (1989).CrossRefGoogle Scholar
- 29.J. M. Harris, J. Macromol. Sci. C-25, 325 (1985).Google Scholar
- 30.L. C. Craig, in: Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 4, p. 1, Elsevier, Amsterdam (1962).Google Scholar
- 31.W. Müller, in: Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology (H. Walter, D. E. Brooks, and D. Fisher, eds.), p. 227, Academic Press, Orlando (1985).Google Scholar
- 32.W. Müller, J. Bioseparation 1, 265 (1990).Google Scholar
- 33.A. Cordes and M.-R. Kula, J. Chromatogr. 376, 375 (1986).Google Scholar
- 34.F. Tjerneld, G. Johansson, and M. Joelsson, Biotechnol. Bioeng. 30, 809 (1987).CrossRefPubMedGoogle Scholar
- 35.V. P. Shanbhag and G. Johansson, Eur. J. Biochem. 93, 363 (1979).CrossRefPubMedGoogle Scholar
- 36.V. P. Shanbhag and L. Backman, in: Separations Using Aqueous Phase Systems (D. Fisher and I. A. Sutherland, eds.), p. 25, Plenum Press, New York (1989).CrossRefGoogle Scholar
- 37.R. Todd, M. Van Dam, D. Casimiro, B. L. Haymore, and E H. Arnold, Proteins 10, 156 (1991).CrossRefPubMedGoogle Scholar
- 38.K. A. Sharp, M. Yalpani, S. J. Howard, and D. E. Brooks, Anal. Biochem. 154, 110 (1986).CrossRefPubMedGoogle Scholar
- 39.L. J. Karr, J. M. van Alstine, R. S. Snyder, S. G. Shafer, and J. M. Harris, in: Separations Using Aqueous Phase Systems (D. Fisher and I. A. Sutherland, eds.), p. 193, Plenum Press, New York (1989).CrossRefGoogle Scholar
- 40.S. D. Flanagan, S. H. Barondes, and P. Taylor, J. Biol. Chem. 251, 858 (1976).PubMedGoogle Scholar
- 41.G. Johansson, R. Gysin, and S. D. Flanagan, J. Biol. Chem. 256, 9126 (1981).PubMedGoogle Scholar
- 42.G. Johansson and H. Westrin, Plant Sci. Lett. 13, 201 (1978).CrossRefGoogle Scholar
- 43.G. Kopperschläger and G. Birkenmeier, J. Bioseparation 1, 235 (1990).Google Scholar