Advertisement

Affinity Partitioning in PEG-Containing Two-Phase Systems

  • Göte Johansson
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Water and other liquids can be divided into two fluid compartments or phases (in direct contact with each other) by using them as solvents for poly(ethylene glycol) (PEG) together with another polymeric substance.1 The incompatibility of polymers in solution that gives rise to this phase separation also has the consequence that the two polymers are accumulated in opposite phases. The difference in polymer structures and polymer concentrations in the phases may cause significant divergences in the solvating properties for high molecular weight substances added in low concentration. When water is used as the solvent, added salts partition more or less evenly between the phases. Proteins, on the other hand, partition more unequally. The actual partition of a substance is described by the partition coefficient, K, which is defined as the ratio of the concentration of partitioned substance between the upper and lower phase. The most popular aqueous two-phase systems for partitioning of biological substances have been the ones containing PEG and dextran.2–4 The top phases of these systems contain, besides water, mainly PEG (5–15%) while the bottom phases contain dextran (10–25%) and some PEG (0.2–2%). Three PEG-dextran systems which have identical phase compositions are shown in Figure 1.

Keywords

Partition Coefficient Free Ligand Target Substance Affinity Ligand Binodal Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Johansson and M. Joelsson, J. Chromatogr. 464, 49 (1989).Google Scholar
  2. 2.
    P-Å. Albertsson, Partition of Cell Particles and Macromolecules, 3rd ed., Wiley, New York (1986).Google Scholar
  3. 3.
    H. Walter, D. E. Brooks, and D. Fisher (eds.), Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology, Academic Press, Orlando (1985).Google Scholar
  4. 4.
    H. Walter and G. Johansson, Anal. Biochem. 155, 215 (1986).CrossRefPubMedGoogle Scholar
  5. 5.
    G. Johansson, Biofutur 74, Supplement No. 24, 7 (1988).Google Scholar
  6. 6.
    S. D. Flanagan and S. H. Barondes, J. Biol. Chem. 250, 1484 (1975).PubMedGoogle Scholar
  7. 7.
    F. Tjerneld and G. Johansson, J. Bioseparation 1, 255 (1990).Google Scholar
  8. 8.
    G. Johansson, G. Kopperschläger, and P-Å. Albertsson, Eur. J. Biochem, 131, 589 (1983).CrossRefPubMedGoogle Scholar
  9. 9.
    B. Olde and G. Johansson, Neuroscience 15, 1247 (1985).CrossRefPubMedGoogle Scholar
  10. 10.
    G. Johansson and V. P Shanbhag, J. Chromatogr. 284, 63 (1984).CrossRefPubMedGoogle Scholar
  11. 11.
    C. Erlanson-Albertsson, FEBS Lett. 117, 295 (1980).CrossRefPubMedGoogle Scholar
  12. 12.
    G. Kopperschläger, G. Lorenz, and E. Usbeck, J. Chromatogr. 259, 97 (1983).CrossRefPubMedGoogle Scholar
  13. 13.
    G. Johansson and M. Joelsson, Enzyme Microbiol. Technol. 7, 629 (1985).CrossRefGoogle Scholar
  14. 14.
    H. K. Kroner, A. Cordes, A. Schelper, M. Morr, A. F. Bückmann, and M.-R. Kula, in: Affinity Chromatography and Related Techniques (T. C. J. Gribnau, J. Visser, and R. J. F Nivard, eds.), p. 491, Elsevier, Amsterdam (1982).Google Scholar
  15. 15.
    M. Joelsson and G. Johansson, Enzyme Microbiol. Technol. 9, 233 (1987).CrossRefGoogle Scholar
  16. 16.
    P. Hubert, E. Dellacherie, J. Neel, and E.-E. Baulieu, FEBS Lett. 65, 169 (1976).CrossRefPubMedGoogle Scholar
  17. 17.
    G. Birkenmeier, G. Kopperschläger, and G. Johansson, Biomed. Chromatogr. 1, 64 (1986).CrossRefPubMedGoogle Scholar
  18. 18.
    G. Birkenmeier, B. Tschechonien, and G. Kopperschläger, FEBS Lett. 174, 162 (1984).CrossRefPubMedGoogle Scholar
  19. 19.
    G. Takerkart, E. Segard, and M. Monsigny, FEBS Lett. 42, 218 (1974).CrossRefPubMedGoogle Scholar
  20. 20.
    E. Hofmann and G. Kopperschläger, Methods Enzymol. 90, 49 (1982).CrossRefPubMedGoogle Scholar
  21. 21.
    G. Johansson, Mol. Cell. Biochem. 4, 169 (1974).CrossRefPubMedGoogle Scholar
  22. 22.
    G. Johansson and M. Andersson, J. Chromatogr. 303, 39 (1984).CrossRefPubMedGoogle Scholar
  23. 23.
    G. Johansson and M. Joelsson, J. Chromatogr. 393, 195 (1987).CrossRefPubMedGoogle Scholar
  24. 24.
    A. Szöke, M. Joelsson, and G. Johansson, unpublished results.Google Scholar
  25. 25.
    G. Johansson and M. Joelsson, Enzyme Microbiol. Technol. 7, 629 (1985).CrossRefGoogle Scholar
  26. 26.
    G. Johansson and M. Joelsson, J. Chromatogr. 537, 219 (1991).CrossRefGoogle Scholar
  27. 27.
    G. Johansson, in: Protein-Dye Interaction: Developments and Applications (M. A. Vijayalakshmi and O. Bertrand, eds.), p. 165, Elsevier, London (1989).CrossRefGoogle Scholar
  28. 28.
    J. N. Baskir, T. A. Hatton, and U. W. Suter, J. Phys. Chem. 93, 969 (1989).CrossRefGoogle Scholar
  29. 29.
    J. M. Harris, J. Macromol. Sci. C-25, 325 (1985).Google Scholar
  30. 30.
    L. C. Craig, in: Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 4, p. 1, Elsevier, Amsterdam (1962).Google Scholar
  31. 31.
    W. Müller, in: Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology (H. Walter, D. E. Brooks, and D. Fisher, eds.), p. 227, Academic Press, Orlando (1985).Google Scholar
  32. 32.
    W. Müller, J. Bioseparation 1, 265 (1990).Google Scholar
  33. 33.
    A. Cordes and M.-R. Kula, J. Chromatogr. 376, 375 (1986).Google Scholar
  34. 34.
    F. Tjerneld, G. Johansson, and M. Joelsson, Biotechnol. Bioeng. 30, 809 (1987).CrossRefPubMedGoogle Scholar
  35. 35.
    V. P. Shanbhag and G. Johansson, Eur. J. Biochem. 93, 363 (1979).CrossRefPubMedGoogle Scholar
  36. 36.
    V. P. Shanbhag and L. Backman, in: Separations Using Aqueous Phase Systems (D. Fisher and I. A. Sutherland, eds.), p. 25, Plenum Press, New York (1989).CrossRefGoogle Scholar
  37. 37.
    R. Todd, M. Van Dam, D. Casimiro, B. L. Haymore, and E H. Arnold, Proteins 10, 156 (1991).CrossRefPubMedGoogle Scholar
  38. 38.
    K. A. Sharp, M. Yalpani, S. J. Howard, and D. E. Brooks, Anal. Biochem. 154, 110 (1986).CrossRefPubMedGoogle Scholar
  39. 39.
    L. J. Karr, J. M. van Alstine, R. S. Snyder, S. G. Shafer, and J. M. Harris, in: Separations Using Aqueous Phase Systems (D. Fisher and I. A. Sutherland, eds.), p. 193, Plenum Press, New York (1989).CrossRefGoogle Scholar
  40. 40.
    S. D. Flanagan, S. H. Barondes, and P. Taylor, J. Biol. Chem. 251, 858 (1976).PubMedGoogle Scholar
  41. 41.
    G. Johansson, R. Gysin, and S. D. Flanagan, J. Biol. Chem. 256, 9126 (1981).PubMedGoogle Scholar
  42. 42.
    G. Johansson and H. Westrin, Plant Sci. Lett. 13, 201 (1978).CrossRefGoogle Scholar
  43. 43.
    G. Kopperschläger and G. Birkenmeier, J. Bioseparation 1, 235 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Göte Johansson
    • 1
  1. 1.Department of Biochemistry, Chemical CenterUniversity of LundLundSweden

Personalised recommendations