Advertisement

Molecular Simulation of Protein-PEG Interaction

  • Kap Lim
  • James N. Herron
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Poly(ethylene glycol) (PEG) is a water-soluble polymer that exhibits properties such as protein resistance, low toxicity, and nonimmunogenicity.1–5 These properties have been attributed to its segmental flexibility and its polar, but uncharged, chemical composition. This segmental flexibility produces a high degree of steric exclusion and entropy at PEG-water interfaces which in turn leads to protein resistance. Its exclusion property also enables the precipitation of proteins without denaturation.6–9

Keywords

Interaction Energy Torsion Angle Polymeric Surface Molecular Simulation Contact Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kondo, M. Kishimura, S. Katoh, and E. Sada, Biotech. Bioeng. 34, 532 (1989).CrossRefGoogle Scholar
  2. 2.
    T. Suzuki, K. Ikeda, and T. Tomono, J. Biomater. Sci. Polymer Ed. 1, 75 (1989).Google Scholar
  3. 3.
    S. Zalipsky, C. Gilon, and A. Zilkha, Eur. Polym. J. 19, 1177 (1983).CrossRefGoogle Scholar
  4. 4.
    I. N. Topchieva, Russ. Chem. Rev. 49, 260 (1980).CrossRefGoogle Scholar
  5. 5.
    A. Abuchowski, T. van Es, N. C. Palczuk, and F. F. Davis, J. Biol. Chem. 252, 3578 (1977).PubMedGoogle Scholar
  6. 6.
    K. C. Ingham, Methods Enzymol. 104, 351 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    D. D. Knoll and J. Hermans, Biopolymers 20, 1747 (1981).CrossRefGoogle Scholar
  8. 8.
    D. H. Atha and K. C. Ingham, J. Biol. Chem. 256, 12108 (1981).PubMedGoogle Scholar
  9. 9.
    J. Wilf and A. P. Minton, Biochim. Biophys. Acta 670, 316 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, New York (1987).Google Scholar
  11. 11.
    B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957).CrossRefGoogle Scholar
  12. 12.
    B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).CrossRefGoogle Scholar
  13. 13.
    N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949).PubMedCrossRefGoogle Scholar
  14. 14.
    R. H. Boyd, Macromolecules 22, 2477 (1989).CrossRefGoogle Scholar
  15. 15.
    D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352 (1978).CrossRefGoogle Scholar
  16. 16.
    E. Helfand, Z. R. Wasserman, and T. A. Weber, Macromolecules 13, 526 (1980).CrossRefGoogle Scholar
  17. 17.
    R. H. Reid, C. A. Hooper, and B. R. Brooks, Biopolymers 28, 525 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    K. A. Dill, J. Naghizadeh, and J. A. Marqusee, Annu. Rev. Phys. Chem. 39, 425 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Baumgärtner, Annu. Rev. Phys. Chem. 35, 419 (1984).CrossRefGoogle Scholar
  20. 20.
    K. Kremer, G. S. Grest, and I. Carmesin, Phys. Rev. Lett. 61, 566 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    T. A. Weber and E. Helfand, J. Phys. Chem. 87, 2881 (1983).CrossRefGoogle Scholar
  22. 22.
    D. Rigby and R.-J. Roe, J. Chem. Phys. 89, 5280 (1988).CrossRefGoogle Scholar
  23. 23.
    D. N. Theodorou and U. W. Suter, Macromolecules 18, 1467 (1985).CrossRefGoogle Scholar
  24. 24.
    D. R. Fitzgibbon and R. L. McCullough, J. Polym. Sci., Part B 27, 655 (1989).CrossRefGoogle Scholar
  25. 25.
    G. Forgacs, V. Privman, and H. L. Frisch, J. Chem. Phys. 90, 3339 (1989).CrossRefGoogle Scholar
  26. 26.
    A. C. Balaze and S. Lewandowski, Macromolecules 23, 839 (1990).CrossRefGoogle Scholar
  27. 27.
    P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York (1985).Google Scholar
  28. 28.
    P. G. de Gennes, Macromolecules 13, 1069 (1980).CrossRefGoogle Scholar
  29. 29.
    S. Alexander, J. Phys. (Paris) 38, 983 (1977).CrossRefGoogle Scholar
  30. 30.
    M. Muthukumar and J.-S. Ho, Macromolecules 22, 965 (1989).CrossRefGoogle Scholar
  31. 31.
    S. T. Milner, T. A. Witten, and M. E. Cates, Macromolecules 21, 2610 (1988).CrossRefGoogle Scholar
  32. 32.
    M. Murat and G. S. Grest, Macromolecules 22, 4054 (1989).CrossRefGoogle Scholar
  33. 33.
    N. Tomioka, A. Itai, and Y. Iitaka, J. Comput.-Aided Mol. Design 1, 197 (1987).CrossRefGoogle Scholar
  34. 34.
    B. W. Morrissey and R. R. Stromberg, J. Colloid Interface Sci. 46, 152 (1974).CrossRefGoogle Scholar
  35. 35.
    S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. de Gennes, J. Colloid Interface Sci. 142, 149 (1991).CrossRefGoogle Scholar
  36. 36.
    S. I. Jeon and J. D. Andrade, J. Colloid Interface Sci. 142, 159 (1991).CrossRefGoogle Scholar
  37. 37.
    J. Vila and J. L. Alessandrini, J. Theor. Biol. 134, 445 (1988).PubMedCrossRefGoogle Scholar
  38. 38.
    D. R. Lu and K. Park, J. Biomat. Sci. Polym. Ed. 1, 243 (1990).CrossRefGoogle Scholar
  39. 39.
    C. L. Brooks, M. Karplus, and B. M. Pettitt, Adv. Chem. Phys. 71 (1988).Google Scholar
  40. 40.
    J. A. McCammon and S. C. Harvey, Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge (1987).CrossRefGoogle Scholar
  41. 41.
    A. T. Hagler, The Peptides 7, 213 (1985).Google Scholar
  42. 42.
    A. T. Hagler, J. R. Maple, T. S. Thacher, G. B. Fitzgerald, and U. Dinur, in: Computer Simulation of Biomolecular Systems (W. F. van Gunsteren and P. K. Weiner, eds.), p. 149, ESCOM, Leiden, Netherlands (1989).Google Scholar
  43. 43.
    S. C. Harvey, Proteins 5, 78 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    Y. Takahashi and H. Tadokoro, Macromolecules 6, 672 (1973).CrossRefGoogle Scholar
  45. 45.
    Protein Data Bank Newsletter, No. 46, Brookhaven National Laboratory, Upton, NY 11973 (1988).Google Scholar
  46. 46.
    P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest, and A. T. Hagler, Proteins 4, 31 (1988).PubMedCrossRefGoogle Scholar
  47. 47.
    R. Edberg, D. J. Evans, and G. P. Morriss, J. Chem. Phys. 87, 5700 (1987).CrossRefGoogle Scholar
  48. 48.
    J. Skolnick and E. Helfand, J. Chem. Phys. 72, 5489 (1980).CrossRefGoogle Scholar
  49. 49.
    E. Helfand, Science 226, 647 (1984).PubMedCrossRefGoogle Scholar
  50. 50.
    A. J. Hopfinger and D. C. Doherty, Polym. Prepr. 30, 5 (1989).Google Scholar
  51. 51.
    J. Wang, S.-C. Huang, J. Lin, and J. D. Andrade, submitted.Google Scholar
  52. 52.
    M. L. Connolly, J. Appl. Crystallogr. 16, 548 (1983).CrossRefGoogle Scholar
  53. 53.
    A.-R Wei, J. N. Herron, and J. D. Andrade, in: From Clone to Clinic (D. J. A. Crommelin, ed.), p. 305, Kluwer Academic Publishers, Netherlands (1990).CrossRefGoogle Scholar
  54. 54.
    C. Tanford, The Hydrophobie Effect, Chap. 5, Wiley-Interscience, New York (1980).Google Scholar
  55. 55.
    R. Kjellander and E. Florin, J. Chem. Soc, Faraday Trans. 1, 77, 2053 (1981).Google Scholar
  56. 56.
    R. M. Levy, M. Karplus, J. Kushick, and D. Perahia, Macromolecules 17, 1370 (1984).CrossRefGoogle Scholar
  57. 57.
    M. Mezei, S. Swaminathan, and D. L. Beveridge, J. Am. Chem. Soc. 100, 3255 (1978).CrossRefGoogle Scholar
  58. 58.
    P. H. Berens, D. H. J. Mackay, G. M. White, and K. R. Wilson, J. Chem. Phys. 79, 2375 (1983).CrossRefGoogle Scholar
  59. 59.
    W. L. Jorgensen, Acc. Chem. Res. 22, 184 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kap Lim
    • 1
  • James N. Herron
    • 1
  1. 1.Center for Biopolymers at Interfaces, and Departments of Bioengineering and PharmaceuticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations