Advertisement

Polystyrene-Immobilized PEG Chains

Dynamics and Application in Peptide Synthesis, Immunology, and Chromatography
  • Ernst Bayer
  • Wolfgang Rapp
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Poly(ethylene glycol) (or PEG) is very compatible with peptides and proteins. It is soluble in water and almost all organic solvents, with the exception of aliphatic hydrocarbons and ether. This polymer was shown to be a valuable support for peptide and nucleotide synthesis in homogeneous solution (liquid-phase method1–5) as an alternative to the solid-phase method of Merrifield.13 In general, PEG of molecular masses 3000–20,000 daltons are used in liquid-phase peptide synthesis. Even insoluble free peptides often are solubilized, if covalently linked to PEG. On the other hand, the conformation of the peptide bound to PEG is the same as the conformation of the free peptide in the same solvents. A synthetic cycle using the liquid-phase procedure is shown in Scheme 1. The couplings are carried out in homogeneous solution.

Keywords

Graft Copolymer Peptide Synthesis Amino Acid Ester Coupling Component Bromoacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bayer, Nachr. Chem. Tech. 20, 495 (1972).Google Scholar
  2. 2.
    M. Mutter, H. Hagenmaier, and E. Bayer, Angew. Chem. 83, 883 (1971).CrossRefGoogle Scholar
  3. M. Mutter, H. Hagenmaier, and E. Bayer, Angew. Chem., Int. Ed. Engl. 10, 811 (1971).CrossRefGoogle Scholar
  4. 3.
    E. Bayer and M. Mutter, Nature (London) 237, 512 (1971).CrossRefGoogle Scholar
  5. 4.
    M. Mutter and E. Bayer, in: The Peptides (E. Gross and J. Meienhofer, eds.), Vol. 2, p. 285, Academic Press, New York (1970).Google Scholar
  6. 5.
    M. Mutter, R. Uhmann, and E. Bayer, Justus Liebigs Ann. Chem., 901 (1975).Google Scholar
  7. 6.
    E. Bayer, M. Mutter, R. Uhmann, J. Polster, and H. Mauser, J. Am. Chem. Soc. 96, 7333 (1974).PubMedCrossRefGoogle Scholar
  8. 7.
    M. Mutter and E. Bayer, Angew. Chem. 86, 101 (1974).CrossRefGoogle Scholar
  9. M. Mutter and E. Bayer, Angew. Chem., Int. Ed. Engt. 13, 149 (1974).CrossRefGoogle Scholar
  10. 8.
    E. Bayer and M. Mutter, Chem. Ber. 107, 1344 (1974).CrossRefGoogle Scholar
  11. 9.
    M. Mutter, Macromolecules 10, 1413 (1977).PubMedCrossRefGoogle Scholar
  12. 10.
    M. Mutter, F. Maser, K.-H. Altmann, C. Toniolo, and G. M. Bonora, Biopolymers 24, 1057 (1985).PubMedCrossRefGoogle Scholar
  13. 11.
    M. Mutter, H. Mutter, and E. Bayer, in: Peptides: Chemistry, Structure and Biology (M. Goodman and J. Meienhofer, eds.), p. 403, Wiley, New York (1977).Google Scholar
  14. 12.
    E. Bayer, M. Mutter, and G. Holzer, in: Peptides: Chemistry, Structure and Biology (R. Walter and J. Meienhofer, eds.), p. 426, Ann Arbor Sci. Publ., Ann Arbor (1975).Google Scholar
  15. 13.
    R. B. Merrifield, J. Am. Chem. Soc. 85, 2149 (1963).CrossRefGoogle Scholar
  16. 14.
    A. Warshavsky, R. Kaliv, A. Doshe, H. Berkovitz, and A. Patchornik, J. Am. Chem. Soc. 101, 4249 (1979).CrossRefGoogle Scholar
  17. 15.
    E. Tsuchida, H. Nishide, N. Shimidazu, A. Yamada, and M. Keneko, Makromol. Chem., Rapid Commun. 2, 621 (1981).CrossRefGoogle Scholar
  18. 16.
    E. Bayer, B. Hemmasi, K. Albert, W. Rapp, and M. Dengler, in Peptides: Structure and Function (V. J. Hruby and D. H. Rich, eds.), p. 87, Pierce Chem. Comp. (1983).Google Scholar
  19. 17.
    E. Bayer and W. Rapp, German Patent DOS 3714258 (1988).Google Scholar
  20. 18.
    E. Bayer, M. Dengler, and B. Hemmasi, Int. J. Pept. Protein Res. 25, 178 (1985).CrossRefGoogle Scholar
  21. 19.
    E. Bayer and W. Rapp, in Chemistry of Peptides and Proteins (W. Voelter, E. Bayer, Y. A. Ovchinnikov, and V. I. Ivanov, eds.), p. 3, Walter de Gruyter, Berlin (1986).Google Scholar
  22. 20.
    E. Bayer, H. Hellstern, and H. Eckstein, Z. Naturforsch. 42c, 455 (1987).Google Scholar
  23. 21.
    W. Rapp, L. Zhang, R. Häbich, and E. Bayer, in Peptides 1988 (G. Jung and E. Bayer, eds.), p. 199, Walter de Gruyter, Berlin (1989).Google Scholar
  24. 22.
    E. Bayer, K. Albert, H. Willisch, W. Rapp, and B. Hemmasi, Macromolecules 23, 1937 (1990).CrossRefGoogle Scholar
  25. 23.
    Tentacle polymers are supplied as TentaGel0 by Rapp Polymere, Tübingen.Google Scholar
  26. 24.
    J. Ugelstadt and P. C. Mork, Adv. Colloid Interface Sci. 13, 101 (1980).CrossRefGoogle Scholar
  27. 25.
    F. K. Hansen and J. Ugelstadt, J. Polym. Sci. 16, 1953 (1978);17, 3033 (1979).Google Scholar
  28. 26.
    E. Bayer and W. Rapp, unpublished.Google Scholar
  29. 27.
    J. Rudinger and P. Buetzer, in Peptides 1974 (J. Wolman, ed.), p. 211, Wiley, New York (1975).Google Scholar
  30. 28.
    T. Hori, W. Rapp, and E. Bayer, Proceedings of the 30th Symposium on Chemistry of Dying, Osaka, Japan, p. 42 (July 1988).Google Scholar
  31. 29.
    T. Hori, W. Rapp, and E. Bayer, unpublished results.Google Scholar
  32. 30.
    E. Bayer, Angew. Chem. 103, 117 (1991).CrossRefGoogle Scholar
  33. E. Bayer, Angew. Chem., Int. Ed. Engl. 30, 113 (1991).CrossRefGoogle Scholar
  34. 31.
    L. Zhang, W. Rapp, and E. Bayer, in Peptides 1990 (E. Giralt, ed.), p. 196, Epson, Amsterdam.Google Scholar
  35. 32.
    H. Zeppezauer, W. Rapp, and E. Bayer, in preparation.Google Scholar
  36. 33.
    E. Pfaff, H.-J. Thiel, H.-O. Böhm, and J. Leban, Arzneim.-Forsch. Drug Res. 37, 82 (1987).Google Scholar
  37. 34.
    H. Küpper, W. Keller, G. Kurz, S. Forss, H. Schaller, R. Franze, K. Strohmaier, O. Marquardt, V. G. Zuslavsky, and P. H. Hofschneider, Nature (London) 289, 555 (1989).CrossRefGoogle Scholar
  38. 35.
    S. Modrow and H. Wolff, J. Immunol. Methods 118, 1 (1989).PubMedCrossRefGoogle Scholar
  39. 36.
    J. T. Sparrow, D. A. Sparrow, Z. Li Xin, M. Kovar, W. Li, and R. B. Arlinghaus, in Peptides: Chemistry, Structure and Biology (J. E. Rivier and G. R. Marshall, eds.), p. 714, Escon, Leiden (1990).Google Scholar
  40. 37.
    M. Flegel, D. Pichova, P Minarik, and R. C. Sheppard, in Peptides 1990 (E. Giralt, ed.), p. 837.Google Scholar
  41. 38.
    W. Rapp, E. Bayer, L. Zhang, A. Beck-Sickinger, K. Deres, K.-H. Wiesmüller, and G. Jung, in preparation.Google Scholar
  42. 39.
    E. Bayer and W. Rapp, presented at the 14th International Symposium on Column Liquid Chromatography, 20–25th May, Boston (1990).Google Scholar
  43. 40.
    J. Chibata, in Immobilized Enzymes, pp. 9–142, Wiley, New York (1978).Google Scholar
  44. 41.
    G. Manecke, E. Ehrenthal, and J. Schlünsen in Characterization of Immobilized Biocatalysts (K. Buchholz, ed.), p. 49, Schön u. Wetzel, Frankfurt (1979).Google Scholar
  45. 42.
    W. H. Scouten (ed.), Solid Phase Biochemistry, Wiley, New York (1983).Google Scholar
  46. 43.
    M. Zeppezauer, unpublished results.Google Scholar
  47. 44.
    W Rapp, Ph.D. thesis, University of Tübingen, Germany (1985).Google Scholar
  48. 45.
    H. Schlecker, Ph.D. thesis, University of Tübingen, Germany (1989).Google Scholar
  49. 46.
    E. Bayer, W. Rapp, and H. Fritz, unpublished results.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ernst Bayer
    • 1
  • Wolfgang Rapp
    • 1
  1. 1.Institute for Organic ChemistryUniversity of TübingenTübingenGermany

Personalised recommendations