Advertisement

Water Structure of PEG Solutions by Differential Scanning Calorimetry Measurements

  • Kris P. Antonsen
  • Allan S. Hoffman
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

As this volume attests, poly(ethylene glycol) or PEG is a material of growing importance in the biomedical world. It has been used in free solution as an agent for cell fusion1 and protein precipitation.2 It has also been conjugated to proteins and drugs to reduce immunological responses and control pharmacodynamics.3 Finally, it has been used in biocompatible materials, either as a coating or incorporated into a hydrogel.4 These surfaces are expected to be highly biocompatible because protein adsorption to them is low.4,5 Both the amount of protein adsorption and the magnitude of other biochemical events, such as platelet adhesion, rapidly decline as the PEG molecular weight rises.6,7 This decline is most marked at molecular weights up to 1000, after which the biointeractions tend to level out gradually.

Keywords

Platelet Adhesion Polymer Molecular Weight Freezing Point Depression Triethylene Glycol Tetraethylene Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Davidson and P. S. Gerald, Methods Cell Biol. 15, 325 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Fried and P W. Chun, Methods Enzymol. 22, 238 (1971).CrossRefGoogle Scholar
  3. 3.
    A. Abuchowski, G. M. Kazo, C. R. Verhoest, T. van Es, D. Kafkewitz, M. L. Nucci, A. T. Viau, and F. F. Davis, Cancer Biochem. Biophys. 7, 175 (1984).PubMedGoogle Scholar
  4. J. S. Beckman, R. L. Minor, Jr., C. W. White, J. E. Repine, G. M. Rosen, and B. A. Freeman, J. Biol. Chem. 263, 6884 (1988).PubMedGoogle Scholar
  5. F. F. Davis, A. Abuchowski, T. van Es, N. C. Palczuk, R. Chen, K. Savoca, and K. Wieder, in: Enzyme Engineering (G. B. Brown, G. Nanecke, and L. B. Wingard, Jr., eds.), Vol. 4, p. 169, Plenum Press, New York (1978).CrossRefGoogle Scholar
  6. N. V. Katre, M. J. Knauf, and W. J. Laird, Proc. Natl. Acad. Sci. U.S.A. 84, 1487 (1987).PubMedCrossRefGoogle Scholar
  7. 4.
    E. W. Merrill and E. W. Salzman, ASAIO J. 6, 60 (1983).Google Scholar
  8. 5.
    S. Nagaoka, Y. Mori, H. Takiuchi, K. Yokota, H. Tanzawa, and S. Nishiumi, Polym. Preprints 24, 67 (1983).Google Scholar
  9. 6.
    S. Nagaoka, H. Takiuchi, K. Yokota, Y. Mori, H. Tanzawa, and T. Kikuchi, Kobunshi Ronbunshu 39, 165 (1982).CrossRefGoogle Scholar
  10. S. Nagaoka, Y. Mori, H. Takiuchi, K. Yokota, H. Tanzawa, and S. Nishiumi, in: Polymers as Biomaterials (S. W. Shalaby, A. S. Hoffman, B. D. Ratner, and T. A. Horbett, eds.), p. 361, Plenum Press, New York (1984).CrossRefGoogle Scholar
  11. 7.
    Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noishiki, Trans. Am. Soc. Artif. Intern. Organs 28, 459 (1982).PubMedGoogle Scholar
  12. 8.
    J. Breen, D. Huis, J. de Bleijser, and J. C. Leyte, J. Chem. Soc, Faraday Trans. 184, 293 (1988).Google Scholar
  13. G. N. Ling and R. C. Murphy, Physiol. Chem. Phys. 14, 209 (1982).PubMedGoogle Scholar
  14. V. D. Zinchenko, V. V. Mank, V. A. Moiseev, and F. D. Ovcharenko, Kolloidn. Zh. 38, 44 [Chem. Abstr. 84, 136208] (1976).Google Scholar
  15. 9.
    S. L. Hager and T. B. MacRury, J. Appl. Polym. Sci. 25, 1559 (1980).CrossRefGoogle Scholar
  16. 10.
    B. Bogdanov and M. Mihailov, J. Polym. Sci., Polym. Phys. Ed. 23, 2149 (1985).CrossRefGoogle Scholar
  17. 11.
    N. B. Graham, M. Zulfiqar, N. E. Nwachuku, and A. Rashid, Polymer 30, 528 (1989).CrossRefGoogle Scholar
  18. 12.
    T. de Vringer, J. G. H. Joosten, and H. E. Junginger, Colloid Polym. Sci. 264, 623 (1986).CrossRefGoogle Scholar
  19. 13.
    C. P. S. Tilcock and D. Fisher, Biochim. Biophys. Acta 688, 645 (1982).PubMedCrossRefGoogle Scholar
  20. 14.
    R. Kjellander and E. Florin, J. Chem. Soc., Faraday Trans. 177, 2053 (1981).Google Scholar
  21. 15.
    Z. L. Zhang and G. N. Ling, Physiol. Chem. Phys. Med. NMR 15, 407 (1983).PubMedGoogle Scholar
  22. 16.
    F. Franks, in: Water: A Comprehensive Treatise (F. Franks, ed.), Vol. 7, p. 215, Plenum Press, New York (1982).Google Scholar
  23. 17.
    J. H. Awbery, in: International Critical Tables (E. W. Washburn, ed.), Vol. 5, p. 95, McGraw-Hill, New York (1929).Google Scholar
  24. 18.
    G. N. Malcolm and J. S. Rowlinson, Tans. Faraday Soc. 53, 921 (1957).CrossRefGoogle Scholar
  25. 19.
    H. Vink, Eur. Polym. J. 7, 1411 (1971).CrossRefGoogle Scholar
  26. 20.
    V. Hlady, R. A. Van Wagenen, and J. D. Andrade, in: Surface and Interfacial Aspects of Biomedical Polymers (J. D. Andrade, ed.), Vol. 2, p. 81, Plenum Press, New York (1985).Google Scholar
  27. 21.
    K. Bergstrom, K. Holmberg, A. Safranj, A. S. Hoffman, M. J. Edgell, B. A. Hovanes, and J. M. Harris, “Reduction of Fibrinogen Adsorption on PEG-Coated Polystyrene Surfaces,” Biomaterials, in press.Google Scholar
  28. 22.
    D. H. Atha and K. C. Ingham, J. Biol. Chem. 256, 12108 (1981).PubMedGoogle Scholar
  29. 23.
    A. Altmeyer, V.-H. Karl, and K. Ueberreiter, Makromol. Chem. 182, 3311 (1981).CrossRefGoogle Scholar
  30. 24.
    G. G. Hammes and P. B. Roberts, J. Am. Chem. Soc. 90, 7119 (1968).CrossRefGoogle Scholar
  31. 25.
    S. Saeki, N. Kuwahara, M. Nakata, and M. Koneko, Polymer 17, 685 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kris P. Antonsen
    • 1
  • Allan S. Hoffman
    • 1
  1. 1.Center for BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations