Micelles pp 167-181 | Cite as


  • Yoshikiyo Moroi


It has long been known that the aqueous solubility of sparingly soluble or insoluble substances can be increased by adding an appropriate third component. Systematic studies using surfactants led to this phenomenon being called solubilization.1,2 Solubilization plays a very important role in industrial and biological processes. McBain and Hutchinson defined solubilization as “a particular mode of bringing into solution substances that are otherwise insoluble in a given medium, involving the previous presence of a colloidal solution whose particles take up and incorporate within or upon themselves the otherwise insoluble material.”1 This definition is too narrow, because the increase in solubility is not always caused by direct introduction of colloidal particles into the system. More often, the enhanced solubility of the solubilizates as colloidal particles is due to the presence of a third component. Therefore, the term solubilization has come to have the following very broad definition: “the preparation of a thermodynamically stable isotropic solution of a substance normally insoluble or very slightly soluble in a given solvent by the introduction of an additional amphiphilic component or components.”2


Alkyl Chain Length Aggregation Number Micellar Phase Phase Rule Solubilizate Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. L. McBain and E. Hutchinson, Solubilization and Related Phenomena, Academic Press, New York (1955).Google Scholar
  2. 2.
    P. H. Elworthy, A.T. Florence, and C. B. Macfarlane, Solubilization by Surface-Active Agents and its Application in Chemistry and the Biological Sciences, Chapman & Hall, London (1968).Google Scholar
  3. 3.
    R. L. Kroc, D. G. Whedon, and W. Garey, The Physical Chemistry of Bile in Health and Disease [Hepatology, 4(5)], Williams & Wilkins, Baltimore (1984).Google Scholar
  4. 4.
    J. W. Larsen and L. J. Magid, J. Phys. Chem. 78, 834 (1974).CrossRefGoogle Scholar
  5. 5.
    K. Ogino, M. Abe, and N. Takeshita, Bull. Chem. Soc. Jpn. 49, 3679 (1976).CrossRefGoogle Scholar
  6. 6.
    J. Gettins, D. Hall, P. L. Jobling, J. E. Rassing, and E. Wyn-Jones, J. Chem. Soc. Faraday Trans. 2 74, 1957 (1978).CrossRefGoogle Scholar
  7. 7.
    C. A. Bunton and L. Sepulveda, J. Phys. Chem. 83, 680 (1979).CrossRefGoogle Scholar
  8. 8.
    E. Lissi, E. Abuin, and A. M. Rocha, J. Phys. Chem. 84, 2406 (1980).CrossRefGoogle Scholar
  9. 9.
    C. H. Spink and S. Colgan, J. Dolloid Interface Sci. 97, 41 (1984).CrossRefGoogle Scholar
  10. 10.
    S. M. Blokhus, H. Hoiland, and S. Backlund, J. Colloid Interface Sci. 114, 9 (1986).CrossRefGoogle Scholar
  11. 11.
    A. E. Christian, E. E. Tucker, and E. H. Lane, J. Colloid Interface Sci. 84, 423 (1981).CrossRefGoogle Scholar
  12. 12.
    E. D. Tucker and S. D. Christian, J. Colloid Interface Sci. 104, 562 (1985).CrossRefGoogle Scholar
  13. 13.
    V. Rizzo, J. Colloid Interface Sci. 110, 110 (1986).CrossRefGoogle Scholar
  14. 14.
    S. D. Christian, E. E. Tucker, G. A. Smith, and D. S. Bushong, J. Colloid Interface Sci. 113, 439 (1986).CrossRefGoogle Scholar
  15. 15.
    E. Ruckenstein and R. Krishnan, J. Colloid Interface Sci. 71, 321 (1979).CrossRefGoogle Scholar
  16. 16.
    R. Mallikarjun and D. B. Dadyburjor, J. Colloid Interface Sci. 84, 73 (1981).CrossRefGoogle Scholar
  17. 17.
    K. S. Birdi and A. Ben-Nairn, J. Chem. Soc. Faraday Trans. 1 77, 741 (1981).CrossRefGoogle Scholar
  18. 18.
    Y. Moroi, J. Phys. Chem. 84, 2186 (1980).CrossRefGoogle Scholar
  19. 19.
    Y. Moroi, K. Sato, and R. Matuura, J. Phys. Chem. 86, 2463 (1982).CrossRefGoogle Scholar
  20. 20.
    Y. Moroi, H. Noma, and R. Matuura, J. Phys. Chem. 87, 872 (1983).CrossRefGoogle Scholar
  21. 21.
    Y. Moroi, K. Sato, H. Noma, and R. Matuura, in: Surfactants in Solution (K.L. Mittal and B. Lindman, eds.), Vol. 2, pp. 963–979, Plenum Press, New York (1984).Google Scholar
  22. 22.
    Y. Moroi, J. Colloid Interface Sci. 122, 308 (1988).CrossRefGoogle Scholar
  23. 23.
    Y. Moroi and R. Matuura, J. Colloid Interface Sci. 125, 456 (1988).CrossRefGoogle Scholar
  24. 24.
    Y. Moroi and R. Matuura, J. Colloid Interface Sci. 125, 463 (1988).CrossRefGoogle Scholar
  25. 25.
    H. D. Young, Statistical Treatment of Experimental Data, McGraw-Hill, New York (1962).Google Scholar
  26. 26.
    W. Feller, An Introduction of Probability Theory and Its Applications, 3rd ed., Vol. 1, p. 35, Wiley, New York (1967).Google Scholar
  27. 27.
    H. Schott, J. Phys. Chem. 70, 2966 (1966).CrossRefGoogle Scholar
  28. 28.
    S. Ozeki and S. Ikeda, J. Phys. Chem. 89, 5088 (1985).CrossRefGoogle Scholar
  29. 29.
    T. Imae, A. Abe, Y. Taguchi, and S. Ikeda, J. Colloid Interface Sci. 109, 567 (1986).CrossRefGoogle Scholar
  30. 30.
    P. T. Jacob and E. W. Anacker, J. Colloid Interface Sci. 43, 105 (1973).CrossRefGoogle Scholar
  31. 31.
    I. B. C. Matheson and A. D. King, Jr., J. Colloid Interface Sci. 66, 464 (1978).CrossRefGoogle Scholar
  32. 32.
    D. W. Ownby and A. D. King, Jr., J. Colloid Interface Sci. 101, 271 (1984).Google Scholar
  33. 33.
    W. Prapaitrakul nd A. D. King, Jr., J. Colloid Interface Sci. 106, 186 (1985).CrossRefGoogle Scholar
  34. 34.
    M. Abu-Hamdiyyah and I. A. Rahman, J. Phys. Chem. 91, 1530 (1987).CrossRefGoogle Scholar
  35. 35.
    K. S. Birdi, H.N. Singh, and S. U. Dalsager, J. Phys. Chem. 83, 2733 (1979).CrossRefGoogle Scholar
  36. 36.
    J. C. Hoskins and A. D. King, Jr., J. Colloid Interface Sci. 82, 264 (1981).CrossRefGoogle Scholar
  37. 37.
    Y. Nemoto and H. Funahashi, J. Colloid Interface Sci. 80, 542 (1981).CrossRefGoogle Scholar
  38. 38.
    M. Fromon, A. K. Chattopadhyay, and C. Treiner, J. Colloid Interface Sci. 102, 14 (1984).CrossRefGoogle Scholar
  39. 39.
    S. D. Christian, L. S. Smith, D. S. Bushoung, and E. E. Tucker, J. Colloid Interface Sci. 89, 514 (1982).CrossRefGoogle Scholar
  40. 40.
    E. Pramauro, G. Saini, and E. Pelizzetti, Anal. Chim. Acta 166, 233 (1984).CrossRefGoogle Scholar
  41. 41.
    A. Goto, M. Nihei, and F. Endo, J. Phys. Chem. 84, 2268 (1980).CrossRefGoogle Scholar
  42. 42.
    P. Stilbs, J. Colloid Interface Sci. 80, 608 (1981).CrossRefGoogle Scholar
  43. 43.
    R. E. Stark, R. W. Storrs, and M. L. Kasakevich, J. Phys. Chem. 89, 272 (1985).CrossRefGoogle Scholar
  44. 44.
    S. Ghosh, M. Petrin, and A. H. Maki, J. Phys. Chem. 90, 5206 (1986).CrossRefGoogle Scholar
  45. 45.
    G. A. Smith, S. D. Christian, E. E. Tucker, and J. F. Scamehorn, J. Solution Chem. 15, 519 (1986).CrossRefGoogle Scholar
  46. 46.
    E. Azaz and M. Donbrow, J. Phys. Chem. 81, 1636 (1977).CrossRefGoogle Scholar
  47. 47.
    H. Akasu, A. Nishi, M. Ueno, and K. Megro, J. Colloid Interface Sci. 54, 278 (1976).CrossRefGoogle Scholar
  48. 48.
    J. B. S. Bonilha, T. K. Foreman, and D. G. Whitten, J. Am. Chem. Soc. 104, 4215 (1982).CrossRefGoogle Scholar
  49. 49.
    E. B. Abuin and E. A. Lissi, J. Colloid Interface Sci. 95, 198 (1983).CrossRefGoogle Scholar
  50. 50.
    J. C. Russell, U. P. Wild, and D. G. Whitten, J. Phys. Chem. 90, 1319 (1986).CrossRefGoogle Scholar
  51. 51.
    L. B. Shih and R. W. Williams, J. Phys. Chem. 90, 1615 (1986).CrossRefGoogle Scholar
  52. 52.
    F. Tokiwa, J. Colloid Interface Sci. 28, 145 (1968).CrossRefGoogle Scholar
  53. 53.
    J. C. Hoskins and A. D. King, Jr., J. Colloid Interface Sci. 82, 260 (1981).CrossRefGoogle Scholar
  54. 54.
    C. Treiner, J.-F. Bocquet, and C. Pommier, J. Phys. Chem. 90, 3052 (1986).CrossRefGoogle Scholar
  55. 55.
    J. A. Shaeiwitz, A. F.-C. Chan, E. L. Cussler, and D. F. Evans, J. Colloid Interface Sci. 84, 47 (1981).CrossRefGoogle Scholar
  56. 56.
    Y. Miyashita and S. Hayano, J. Colloid Interface Sci. 86, 344 (1982).CrossRefGoogle Scholar
  57. 57.
    P. Lianos, M.-L. Viriot, and R. Zana, J. Phys. Chem. 88, 1098 (1984).CrossRefGoogle Scholar
  58. 58.
    V. C. Reinsborough and J. F. Holzwarth, Can. J. Chem. 64, 955 (1986).CrossRefGoogle Scholar
  59. 59.
    N. Funasaki, S. Hada, and S. Neya, J. Phys. Chem. 88, 1243 (1984).CrossRefGoogle Scholar
  60. 60.
    M. Manabe, S. Kikuchi, S. Katayama, S. Tokunaga, and M. Koda, Bull. Chem. Soc. Jpn. 57, 2027 (1984).CrossRefGoogle Scholar
  61. 61.
    P. Mukerjee, in: Solution Chemistry of Surfactants (K.L. Mittal, ed.), Vol. 1, pp. 153–174, Plenum Press, New York (1979).CrossRefGoogle Scholar
  62. 62.
    P. Mukerjee and J. R. Cardinal, J. Phys. Chem. 82, 1620 (1978).CrossRefGoogle Scholar
  63. 63.
    J. R. Cardinal and P. Mukerjee, J. Phys. Chem. 82, 1614 (1978).CrossRefGoogle Scholar
  64. 64.
    P. Mukerjee, C. Ramachandran, and R. A. Pyter, J. Phys. Chem. 86, 3189 (1982).CrossRefGoogle Scholar
  65. 65.
    C. Ramachandran, R. A. Pyter, and P. Mukerjee, J. Phys. Chem. 86, 3198, 3206 (1982).CrossRefGoogle Scholar
  66. 66.
    K. Kasatani, M. Kawasaki, H. Sato, and N. Nakashima, J. Phys. Chem. 89, 542 (1985).CrossRefGoogle Scholar
  67. 67.
    L. Sepulveda, J. Colloid Interface Sci. 46, 372 (1974).CrossRefGoogle Scholar
  68. 68.
    S. A. Simon, R. V. McDaniel, and T. J. Mclntosh, J. Phys. Chem. 86, 1449 (1982).CrossRefGoogle Scholar
  69. 69.
    P. Mukerjee, Kolloid Z. Z. Polym. 236, 76 (1970).CrossRefGoogle Scholar
  70. 70.
    J. L. Moilliet and B. Collie, Surface Activity, Van Nostrand, Princeton, N. J. (1950).Google Scholar
  71. 71.
    R. Defay, I. Prigogine, A. Bellemans, and D. H. Everret, Surface Tension and Adsorption, Longmans, London (1966).Google Scholar
  72. 72.
    E. A. Guggenheim, Thermodynamics, Elsevier/North-Holland, Amsterdam (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Yoshikiyo Moroi
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations