Skip to main content

Dissolution of Amphiphiles in Water

  • Chapter
Micelles

Abstract

Several terms are used to express relative ease of dissolution, such as soluble at any proportion, very soluble, soluble, slightly or sparingly soluble, and insoluble. Slightly or sparingly soluble materials have aqueous solubilities between about 10−2 and 10−6 mol · dm−3; alcohols and carboxylic acids with n-alkyl chains from C6 to C14 fall in this category. Surfactants can also be classed as barely soluble materials on the basis of their monomeric solubility or their concentration below the CMC, as is reasonably expected from the alkyl chain length of most surfactant molecules. However slight, aqueous soubility clearly indicates the presence of at least one hydrophilic group in a molecule. Particularly if this group is ionic, the degree of aqueous solubility depends strongly on the conditions of solution such as pH, ionic strength, the fraction of organic additives, and the temperature and pressure. Some sparingly soluble materials may be made quite soluble by altering the solution conditions, and the state of the dissolved molecules will vary accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Prigogine and R. Defay, Chemical Thermodynamics, Longmans, New York (1954).

    Google Scholar 

  2. J. G. Kirkwood and I. Oppenheim, Chemical Thermodynamics, McGraw-Hill, New York (1962).

    Google Scholar 

  3. E. A. Guggenheim, Mixtures, Oxford University Press, London (1952).

    Google Scholar 

  4. T. L. Hill, An Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, Mass. (1962).

    Google Scholar 

  5. A. Eisenstein and N. S. Gingrich, Phys. Rev. 62, 261 (1942).

    Article  CAS  Google Scholar 

  6. L. S. Bartell and L. O. Brockway, J. Chem. Phys. 23, 1860 (1955).

    Article  CAS  Google Scholar 

  7. J. H. Hildebrand and L. Scott, Regular Solutions, Prentice-Hall, Englewood Cliffs, N. J. (1962).

    Google Scholar 

  8. A. Ben-Nairn, Water and Aqueous Solutions: Introduction to a Molecular Theory, Plenum Press, New York (1974).

    Book  Google Scholar 

  9. A. Ben-Nairn, J. Phys. Chem. 82, 792 (1978).

    Article  Google Scholar 

  10. A. Ben-Nairn and Y. Marcus, J. Chem. Soc. 81, 2016 (1984).

    Google Scholar 

  11. P. Mukerjee and Y. Moroi, Anal Chem. 50, 1589 (1978).

    Article  CAS  Google Scholar 

  12. Y. Moroi and R. Matuura, Anal Chim. Acta 152, 239 (1983).

    Article  CAS  Google Scholar 

  13. P. Mukerjee and A. K. Ghosh J. Am. Chem. Soc. 92, 6403 (1970).

    Article  CAS  Google Scholar 

  14. A. K. Ghosh and P. Mukerjee, J. Am. Chem. Soc. 92, 6408 (1970).

    Article  Google Scholar 

  15. F. J. C. Rossotti and H. Rossotti, J. Phys. Chem. 65, 926 (1961).

    Article  CAS  Google Scholar 

  16. A. K. Ghosh and P. Mukerjee, J. Am. Chem. Soc. 92, 6413 (1970).

    Article  Google Scholar 

  17. P. Mukerjee and A. K. Ghosh, J. Am. Chem. Soc. 92, 6419 (1970).

    Article  CAS  Google Scholar 

  18. J. C. Petersen, J. Phys. Chem. 75, 1129 (1971).

    Article  CAS  Google Scholar 

  19. H. T. French and R. H. Stokes, J. Phys. Chem. 85, 3347 (1981).

    Article  CAS  Google Scholar 

  20. R. C. Murray and G. S. Hartley, Trans. Faraday Soc. 31, 183 (1935).

    Article  CAS  Google Scholar 

  21. J. W. McBain and W. C. Sierichs, J. Am. Oil Chem. Soc. 25, 221 (1948).

    Article  CAS  Google Scholar 

  22. R. Nemeth and E. Matijevic, J. Colloid Interface Sci. 41, 532 (1972).

    Article  CAS  Google Scholar 

  23. N. Kallay, M. Pastuovic, and E. Matijevic, J. Colloid Interface Sci. 106, 452 (1985).

    Article  CAS  Google Scholar 

  24. V. Hrust, N. Kallay, and D. Tezak, Colloid Polym. Sci. 263, 424 (1985).

    Article  CAS  Google Scholar 

  25. N. Kallay, X.-J. Fan, and E. Matijevic, Acta Chem. Scarid. A40, 257 (1986).

    Article  CAS  Google Scholar 

  26. C. Noik, M. Baviere, and D. Defives, J. Colloid Interface Sci. 115, 36 (1987).

    Article  CAS  Google Scholar 

  27. D. Tezak, F. Strajnar, O. Milat, and M. Stubicar, Progr. Colloid Polym. Sci. 69, 100 (1984).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moroi, Y. (1992). Dissolution of Amphiphiles in Water. In: Micelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0700-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0700-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0702-8

  • Online ISBN: 978-1-4899-0700-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics