Advertisement

Micelles pp 233-248 | Cite as

Interactions between Amphiphiles and Polymers

  • Yoshikiyo Moroi

Abstract

Starting with the description by Bull and Neurath of an interaction between SDS and egg albumin,1 the interaction between amphiphiles and polymers has been widely investigated. Both naturally occurring proteins and starches and synthetic polymers, including polyelectrolytes such as polyacrylic acid and nonionic polymers such as polyethylene oxide, have been investigated. Amphiphiles, on the other hand, may be cationic, anionic, or nonionic. The interaction thus depends on the combinations of amphiphile and polymer.

Keywords

Methyl Orange Anionic Surfactant Alkyl Chain Length Polyacrylic Acid Polyethylene Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Bull and H. Neurath, J. Biol. Chem. 118, 163 (1937).Google Scholar
  2. 2.
    N. Sata and S. Saito, Kolloid Z. 128, 154 (1952).CrossRefGoogle Scholar
  3. 3.
    S. Saito, Kolloid Z. 137, 98 (1954).CrossRefGoogle Scholar
  4. 4.
    M. N. Jones, J. Colloid Interface Sci. 23, 36 (1967).CrossRefGoogle Scholar
  5. 5.
    M. J. Schwuger and H. Lange, 5th International Congress on Surface Active Substances, Barcelona, 1968, Vol. II, p. 955 (1969).Google Scholar
  6. 6.
    S. Saito, Kolloid Z. Z. Polym. 215, 16 (1967).CrossRefGoogle Scholar
  7. 7.
    S. Saito, Kolloid Z. 133, 12 (1953).CrossRefGoogle Scholar
  8. 8.
    M. Nakagaki and Y. Ninomiya, Bull. Chem. Soc. Jpn. 37, 817 (1964).CrossRefGoogle Scholar
  9. 9.
    A. Arai, F. Shigehiro, and I. Maruta, Kogyo Kagaku Zasshi 68, 1090 (1965).CrossRefGoogle Scholar
  10. 10.
    W. Fong and W. H. Ward, Text. Res. J. 24, 881 (1954).CrossRefGoogle Scholar
  11. 11.
    T. Isemura and A. Imanishi, J. Polym. Sci. 33, 337 (1958).CrossRefGoogle Scholar
  12. 12.
    C. Botre, F. DeMartiis, and M. Solinas, J. Phys. Chem. 68, 3624 (1964).CrossRefGoogle Scholar
  13. 13.
    S. Saito, Kolloid Z. 154, 19 (1957).CrossRefGoogle Scholar
  14. 14.
    F. Tokiwa and N. Moriyama, J. Colloid Interface Sci. 30, 338 (1969).CrossRefGoogle Scholar
  15. 15.
    F. W. Putnam, Adv. Protein Chem. 4, 79 (1948).CrossRefGoogle Scholar
  16. 16.
    J. F. Foster, in: The Plasma Proteins (F.W. Putnam, ed.) Vol. 1, p. 179, Academic Press, New York (1960).Google Scholar
  17. 17.
    M. Joly, A Physico-Chemical Approach to the Denaturation of Proteins, p. 30, Academic Press, New York (1965).Google Scholar
  18. 18.
    J. Steinhardt and J. A. Reynolds, Multiple Equilibria in Proteins, Academic Press, New York (1969).Google Scholar
  19. 19.
    C. Tanford, The Hydrophobie Effect: Formation of Micelles and Biological Membranes, p. 126, Wiley, New York (1973).Google Scholar
  20. 20.
    M. N. Jones, Biological Interfaces, p. 101, Elsevier, Amsterdam (1975).Google Scholar
  21. 21.
    M. L. Anson, J. Gen. Physiol. 23, 239 (1939).CrossRefGoogle Scholar
  22. 22.
    A. L. Shapiro, E. Vinuela, and J. V. Maizel, Jr., Biochem. Biophys. Res. Commun. 28, 815 (1967).CrossRefGoogle Scholar
  23. 23.
    K. Weber and M. Osborn, J. Biol. Chem. 244, 4406 (1969).Google Scholar
  24. 24.
    S. A. Rosenberg and G. Guidotti, J. Biol. Chem. 244, 5118 (1969).Google Scholar
  25. 25.
    G. Guidotti, Ann. Rev. Biochem. 41, 731 (1972).CrossRefGoogle Scholar
  26. 26.
    J. R. Huizenger, P. F. Grieger, and F. T. Wall, J. Am. Chem. Soc. 72, 2636 (1950).CrossRefGoogle Scholar
  27. 27.
    M. J. Pallansch and D. R. Briggs, J. Am. Chem. Soc. 76, 1396 (1954).CrossRefGoogle Scholar
  28. 28.
    G. Strauss and U. P. Strauss, J. Phys. Chem. 62, 1321 (1958).CrossRefGoogle Scholar
  29. 29.
    A. Ray, J. Reynolds, H. Polet, and J. Steinhardt, Biochemistry 5, 2606 (1966).CrossRefGoogle Scholar
  30. 30.
    J. Reynolds, H. Herbert, H. Polet, and J. Steinhardt, Biochemistry 6, 937 (1967).CrossRefGoogle Scholar
  31. 31.
    A. V. Few. R. H. Ottewill, and H. C. Parreira, Biochim. Biophys. Acta 18, 136 (1955).CrossRefGoogle Scholar
  32. 32.
    S. Kaneshina, M. Tanaka, T. Kondo, T. Mizuno, and K. Aoki, Bull. Chem. Soc. Jpn. 46, 2735 (1973).CrossRefGoogle Scholar
  33. 33.
    Y. Nozaki, J. A. Reynolds, and C. Tanford, J. Biol. Chem. 249, 4452 (1974).Google Scholar
  34. 34.
    M. N. Jones, H. A. Skinner, and E. Tipping, Biochem. J. 147, 229 (1975).Google Scholar
  35. 35.
    K. Hiramatsu, C. Ueda, K. Iwata, K. Arikawa, and K. Aoki, Bull. Chem. Soc. Jpn. 50, 368 (1977).CrossRefGoogle Scholar
  36. 36.
    G. Scatchard, Ann. N. Y. Acad. Sci. 51, 660 (1949).CrossRefGoogle Scholar
  37. 37.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918).CrossRefGoogle Scholar
  38. 38.
    I. M. Klotz and D. L. Hunston, Biochemistry 10, 3065 (1971).CrossRefGoogle Scholar
  39. 39.
    I. Satake and J. T. Yang, Biopolymers 15, 2263 (1976).CrossRefGoogle Scholar
  40. 40.
    B. H. Zimm and J. K. Bragg, J. Chem. Phys. 31, 526 (1959).CrossRefGoogle Scholar
  41. 41.
    K. S. Schmitz and J. M. Schurr, Biopolymers 9, 697 (1970).CrossRefGoogle Scholar
  42. 42.
    R. A. Marcus, J. Phys. Chem. 58, 621 (1954).CrossRefGoogle Scholar
  43. 43.
    S. Lifson, J. Chem. Phys. 26, 727 (1957).CrossRefGoogle Scholar
  44. 44.
    K. Hayakawa and J. C. T. Kwak, J. Phys. Chem. 86, 3866 (1982).CrossRefGoogle Scholar
  45. 45.
    K. Hayakawa and J. C. T. Kwak, J. Phys. Chem. 87, 506 (1983).CrossRefGoogle Scholar
  46. 46.
    T. Takagi and T. Isemura, Bull. Chem. Soc. Jpn. 33, 437 (1960).CrossRefGoogle Scholar
  47. 47.
    E. M. Osman, S. J. Leith, and M. Fles, Cereal Chem. 38, 449 (1961).Google Scholar
  48. 48.
    H. Arai, M. Murata, and K. Shinoda, Bull. Chem. Soc. Jpn. 37, 223 (1971).Google Scholar
  49. 49.
    K. Shirahama and N. Ide, J. Colloid Interface Sci. 54, 450 (1976).CrossRefGoogle Scholar
  50. 50.
    S. Saito, J. Colloid Interface Sci. 24, 227 (1967).CrossRefGoogle Scholar
  51. 51.
    F. Tokiwa and K. Tsujii, Bull. Chem. Soc. Jpn. 46, 2684 (1973).CrossRefGoogle Scholar
  52. 52.
    C. Tondre, J. Phys. Chem. 89, 5101 (1985).CrossRefGoogle Scholar
  53. 53.
    Y. Moroi, H. Akisada, M. Saito, and R. Matuura, J. Colloid Interface Sci. 61, 233 (1977).CrossRefGoogle Scholar
  54. 54.
    H. Akisada, Y. Kuroki, K. Koga, Y. Moroi, and R. Matuura, Mem Fac. Sci. Kyushu Univ. Ser. C 10, 189 (1978).Google Scholar
  55. 55.
    R. Zana, P. Lianos, and J. Lang, J. Phys. Chem. 89, 41 (1985).CrossRefGoogle Scholar
  56. 56.
    E. A. Lissi and A. Abuin, J. Colloid Interface Sci. 105, 1 (1985).CrossRefGoogle Scholar
  57. 57.
    M. J. Schwuger and H. Lange, Tenside 5, 257 (1968).Google Scholar
  58. 58.
    M. J. Schwuger, J. Colloid Interface Sci. 43, 491 (1973).CrossRefGoogle Scholar
  59. 59.
    K. E. Lewis and C. P. Robinson, J. Colloid Interface Sci. 32, 539 (1970).CrossRefGoogle Scholar
  60. 60.
    W. J. Knox, Jr., and T. O. Parshall, J. Colloid Interface Sci. 33, 16 (1970).CrossRefGoogle Scholar
  61. 61.
    S. Saito, T. Taniguchi, and K. Kitamura, J. Colloid Interface Sci. 37, 154 (1971).CrossRefGoogle Scholar
  62. 62.
    S. Saito and T. Taniguchi, J. Colloid Interface Sci. 44, 114 (1973).CrossRefGoogle Scholar
  63. 63.
    K. Hayakawa, J. Ohta, T. Maeda, I. Satake, and J. C. T. Kwak, Langmuir 3, 377 (1987).CrossRefGoogle Scholar
  64. 64.
    M. J. Grourke and J. H. Gibbs, Biopolymers 10, 795 (1971).CrossRefGoogle Scholar
  65. 65.
    M. Nagasawa and A. Holtzer, J. Am. Chem. Soc. 86, 538 (1964).CrossRefGoogle Scholar
  66. 66.
    S. Y. C. Wooley and G. Holzwarth, Biochemistry 9, 3604 (1970).CrossRefGoogle Scholar
  67. 67.
    S. R. Chaudhuri and J. T. Yang, Biochemistry 7, 1379 (1968).CrossRefGoogle Scholar
  68. 68.
    B. Davidson, N. Tooney, and G. D. Fasman, Biochem. Biophys. Res. Commun. 23, 156 (1966).CrossRefGoogle Scholar
  69. 69.
    R. Townend, T. F. Kumosinski, S. N. Timasheff, G. D. Fasman, and B. Davidson, Biochem. Biophys. Res. Commun. 23, 163 (1966).CrossRefGoogle Scholar
  70. 70.
    N. Greenfield, B. Davidson, and G. D. Fasman, Biochemistry 6, 1630 (1967).CrossRefGoogle Scholar
  71. 71.
    N. Greenfield and G. D. Fasman, Biochemistry 8, 4108 (1969).CrossRefGoogle Scholar
  72. 72.
    G. Holzwarth and P. Doty, J. Am. Chem. Soc. 87, 218 (1965).CrossRefGoogle Scholar
  73. 73.
    J. T. Yang, in: Conformational Biopolymers (G.N. Ramachandran, ed.) Vol. I, p. 157, Academic Press, New York (1967).Google Scholar
  74. 74.
    J. Reynolds, S. Herbert, and J. Steinhardt, Biochemistry 7, 1357 (1968).CrossRefGoogle Scholar
  75. 75.
    K. Shikama, J. Biochem. 64, 55 (1968).Google Scholar
  76. 76.
    E. C. Santos and A. A. Spector, Biochemistry 11, 2299 (1972).CrossRefGoogle Scholar
  77. 77.
    R. V. Decker and J. F. Foster, Biochemistry 5, 1242 (1966).CrossRefGoogle Scholar
  78. 78.
    R. D. Hagenmaier and J. F. Foster, Biochemistry 10, 637 (1971).CrossRefGoogle Scholar
  79. 79.
    O. Laurie and J. Oakes, J. Chem. Soc. Faraday Trans. 172, 1324 (1976).Google Scholar
  80. 80.
    K. Aoki and K. Hiramatsu, Anal. Biochem. 60, 213 (1974).CrossRefGoogle Scholar
  81. 81.
    D. S. Goodman, J. Am. Chem. Soc. 80, 3892 (1958).CrossRefGoogle Scholar
  82. 82.
    C. Tanford, J. Mol. Biol. 67, 59 (1972).CrossRefGoogle Scholar
  83. 83.
    J. Steinhardt, N. Stocker, D. Carroll, and K. S. Birdi, Biochemistry 13, 4461 (1974).CrossRefGoogle Scholar
  84. 84.
    K. Takeda, Bull. Chem. Soc. Jpn. 55, 2547 (1982).CrossRefGoogle Scholar
  85. 85.
    D. M. Bloor and E. Wyn-Jones, J. Chem. Soc. Faraday Trans. 278, 657 (1982).Google Scholar
  86. 86.
    J. Oakes, J. Chem. Soc. Faraday Trans. 170, 2200 (1974).Google Scholar
  87. 87.
    Y. Inoue, S. Sase, R. Chujo, S. nagaoka, and M. Sogami, Biopolymers 18, 373 (1979).CrossRefGoogle Scholar
  88. 88.
    K. Hiramatsu, Biochim. Biophys. Acta 490, 209 (1977).CrossRefGoogle Scholar
  89. 89.
    F. W. Putnam and H. Neurath, J. Am. Chem. Soc. 66, 692 (1944).CrossRefGoogle Scholar
  90. 90.
    J. T. Yang and J. F. Foster, J. Am. Chem. Soc. 75, 5560 (1953).CrossRefGoogle Scholar
  91. 91.
    T. Isemura, F. Tokiwa, and S. Ikeda, Bull. Chem. Soc. Jpn. 28, 555 (1955); 35, 240 (1962).CrossRefGoogle Scholar
  92. 92.
    W. J. Knox, Jr., and J. F. Wright, J. Colloid Sci. 20, 177 (1965).CrossRefGoogle Scholar
  93. 93.
    G. Scatchard, I. H. Scheinberg, and S. H. Armstrong, Jr., J. Am. Chem. Soc. 72, 535, 540 (1950).CrossRefGoogle Scholar
  94. 94.
    M. J. Schwuger, Kolloid Z. Z. Polym. 233, 898 (1969).CrossRefGoogle Scholar
  95. 95.
    K. Takeda, M. Miura, and T. Takagi, J. Colloid Interface Sci. 82, 38 (1981).CrossRefGoogle Scholar
  96. 96.
    M. Abu-Hamidiyyah, Langmuir 2, 310 (1986).CrossRefGoogle Scholar
  97. 97.
    K. Aoki, N. Hayakawa, K. Noda, H. Terada, and K. Hiramatsu, Colloid Polym. Sci. 261, 359 (1983).CrossRefGoogle Scholar
  98. 98.
    Y. Murata, M. Okawauchi, H. Kawamura, G. Sugihara, and M. Tanaka, in: Surfactants in Solution (K.L. Mittal and P. Bothorel, eds.), Vol. 5, p. 861, Plenum Press, New York (1987).Google Scholar
  99. 99.
    Z. Taira and H. Terada, Biochem. Pharmacol. 34, 1999 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Yoshikiyo Moroi
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations