Skip to main content

Micellar Catalysis

  • Chapter
Micelles

Abstract

Most important reactions occur not in a homogeneous solution but at an interface. Many industrially important processes occur on the surfaces of solid catalysts, and nearly all biological reactions take place at gas-liquid interfaces or on an enzyme that may itself be bound to a membrane. The properties of these catalytic surfaces depend critically on the detailed structure of the surface, which can be controlled by adding agents that may themselves take no direct part in the chemical reactions.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. A. Bunton, Prog. Solid State Chem. 8, 239 (1973).

    Article  CAS  Google Scholar 

  2. H. Morawetz, Adv. Catal. 20, 341 (1969).

    Article  CAS  Google Scholar 

  3. E.H. Cordes and R. B. Dunlap, Acc. Chem. Res. 2, 329 (1969).

    Article  CAS  Google Scholar 

  4. I. B. Wilson, Ann. N. Y. Acad. Sci. 81, 307 (1959).

    Article  CAS  Google Scholar 

  5. Y. Moroi, Bull. Chem. Soc. Jpn. 54, 3265 (1981).

    Article  CAS  Google Scholar 

  6. T. C. Bruice, in: The Enzymes (P.D. Boyer, ed.), 3rd. ed., Vol. 2, p. 217, Academic Press, New York, (1970).

    Google Scholar 

  7. E. J. Fendler and J. H. Fendler, Adv. Phys. Org. Chem. 8, 271 (1970).

    Article  CAS  Google Scholar 

  8. I. V. Berezin, K. Martinek, and A. K. Yatsimirski, Russ. Chem. Rev. 42, 787 (1973).

    Article  Google Scholar 

  9. E. H. Cordes, Reaction Kinetics in Micelles, Plenum Press, New York, (1973).

    Book  Google Scholar 

  10. J. H. Fendle and E. J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York (1975).

    Google Scholar 

  11. L. Michaelis and M. L. Menten, Biochem. Z. 49, 333 (1913).

    CAS  Google Scholar 

  12. G. E. Briggs and J. B. S. Haldane, Biochem. J. 19, 338 (1925).

    CAS  Google Scholar 

  13. A. Cornish-Bowden, Principles of Enzyme Kinetics, Butterworths, London (1976).

    Google Scholar 

  14. K. J. Laidler, Can. J. Chem. 33, 1614 (1955).

    Article  CAS  Google Scholar 

  15. Y. Moroi, J. Phys. Chem. 84, 2186 (1980).

    Article  CAS  Google Scholar 

  16. P. Heitmann, Eur. J. Biochem. 5, 305 (1968).

    Article  CAS  Google Scholar 

  17. A. K. Yatsimirski, K. Martinek, and I. V. Berezin, Tetrahedron 27, 2855 (1979)

    Article  Google Scholar 

  18. K. Martinek, A. K. Yatsimirski, A. P. Osipov, and I. V. Berezin, Tetrahedron 29, 963 (1973).

    Article  CAS  Google Scholar 

  19. S. J. Dougherty and J. C. Berg, J. Colloid Interface Sci. 49, 135 (1974).

    Article  CAS  Google Scholar 

  20. K. Shiraham, Bull. Chem. Soc. Jpn. 48, 2673 (1975).

    Article  Google Scholar 

  21. F. M. Menger and C. E. Portnoy, J. Am. Chem. Soc. 89, 4698 (1967).

    Article  CAS  Google Scholar 

  22. D. J. Glover, J. Phys. Chem. 74, 21 (1970).

    Article  CAS  Google Scholar 

  23. J. H. Fendler and R. R. Liechti, J. Chem. Soc. Perkin Trans. 2, 1972, 1041.

    Google Scholar 

  24. T. Harada, N. Nishikido, Y. Moroi, and R. Matuura, Bull. Chem. Soc. Jpn. 54, 2592 (1981).

    Article  CAS  Google Scholar 

  25. C. A. Bunton, in: Solution Chemistry of Surfactants (K.L. Mittal, ed.), Vol. 2, p. 519, Plenum Press, New York (1979).

    Chapter  Google Scholar 

  26. C. A. Bunton, J. Frankson, and L. S. Romsted, J. Phys. Chem. 84, 2607 (1980).

    Article  CAS  Google Scholar 

  27. M. Gonsalves, S. Probst, M. C. Rezende, F. Nome, C. Zucco, and D. Zanette, J. Phys. Chem. 89, 1127 (1985).

    Article  CAS  Google Scholar 

  28. M. Almgren and R. Rydholm, J. Phys. Chem. 83, 360 (1979).

    Article  CAS  Google Scholar 

  29. S. K. Srivastava and S. S. Katiyar, Int. J. Chem. Kinet. 14, 1007 (1982).

    Article  CAS  Google Scholar 

  30. G. Biresaw, C. A. Bunton, C. Quan, and Z.-Y. Yang, J. Am. Chem. Soc. 106, 7178 (1984).

    Article  CAS  Google Scholar 

  31. C. A. Bunton and L. Robinson, J. Am. Chem. Soc. 90, 5972 (1968).

    Article  CAS  Google Scholar 

  32. R. L. Reeves, J. Am. Chem. Soc. 97, 6019 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moroi, Y. (1992). Micellar Catalysis. In: Micelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0700-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0700-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0702-8

  • Online ISBN: 978-1-4899-0700-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics