A Biobehavioral Model of Hypertension Development

  • William R. Lovallo
  • Michael F. Wilson
Part of the Perspectives on Individual Differences book series (PIDF)


In order to address the role played by exaggerated cardiovascular reactivity in the development of hypertension, we first present a model of the disorder, next describe evidence for the major components of the model, derived primarily from animal models of hypertension, and then relate these animal studies to those conducted with humans. Finally, we will attempt to integrate this evidence with possible models of the reactivity-hypertension relationship.


Heart Rate Response Cold Pressor Mental Arithmetic Cardiovascular Reactivity Rest Blood Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alli, C., Avanzini, F., DiTullio, M., Mariotti, G., Salmoirago, E., Taioli, E., & Radice, M. (1990). Left ventricular diastolic function in normotensive adolescents with different genetic risk of hypertension. Clinical Cardiology, 12, 115–118.CrossRefGoogle Scholar
  2. Bouchard, T. J., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota study of twins reared apart. Science, 250, 223–228.PubMedCrossRefGoogle Scholar
  3. Bova, S., Blaustein, M. P., Ludens, J. H., Harris, D. W., Ducharme, D. W., & Hamlyn, J. M. (1991). Effects of an endogenous ouabain-like compound on heart and aorta. Hypertension, 17, 944–950.PubMedCrossRefGoogle Scholar
  4. Curtis, J. J., Luke, R. G., Dustan, H. P., Kashgarian, M., Welchel, J. D., Jones, P., & Diethelm, A. G. (1983). Remission of essential hypertension after renal transplantation. New England Journal of Medicine, 309, 1009–1015.PubMedCrossRefGoogle Scholar
  5. Davies, J. E., Ng, L. L., Ameen, M., Syme, P. D., & Aronson, J. K. (1991). Evidence for altered Na+/H+ antiport activity in cultured skeletal muscle cells and vascular smooth muscle cells from the spontaneously hypertensive rat. Clinical Science, 80, 509–516.PubMedGoogle Scholar
  6. deWardener, H. E. (1991). Kidney, salt intake, and Na+, K+-ATPase inhibitors in hypertension. Hypertension, 17, 830–836.PubMedCrossRefGoogle Scholar
  7. Eccleston-Joyner, C. A., & Gray, S. D. (1988). Arterial hypertrophy in the fetal and neonatal spontaneously hypertensive rat. Hypertension, 12, 513–518.PubMedCrossRefGoogle Scholar
  8. Everson, S. A., Lovallo, W. R., Sausen, K. P., & Wilson, M. F. (1992). Hemodynamic characteristics of young men at risk for hypertension at rest and during laboratory Stressors. Health Psychology, 11, 24–31.PubMedCrossRefGoogle Scholar
  9. Folkow, B. (1982). Physiological aspects of primary hypertension. Physiological Reviews, 62, 347–504.PubMedGoogle Scholar
  10. Folkow, B. (1990). “Structural Factor” in primary and secondary hypertension. Hypertension, 16, 89–101.PubMedCrossRefGoogle Scholar
  11. Froom, P., Bar-David, M., Ribak, J., VanDyk, D., Kaliner, B., & Benbassat, J. (1983). Predictive value of systolic blood pressure in young men for elevated systolic blood pressure 12 to 15 years later. Circulation, 68, 467–469.PubMedCrossRefGoogle Scholar
  12. Hallbäck, M. (1975). Interaction between central neurogenic mechanisms and changes in cardiovascular design in primary hypertension. Acta Physiologica Scandinavica, (Suppl. 424), 1–59.Google Scholar
  13. Harrap, S. B., Van der Merwe, W. M., Griffin, S. A., MacPherson, F., & Lever, A. F. (1990). Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term. Hypertension, 16, 603–614.PubMedCrossRefGoogle Scholar
  14. Hendley, E. D., Wessel, D. J., & VanHouten, J. (1986). Inbreeding of Wistar-Kyoto rat strain with hyperactivity but without hypertension. Behavioral and Neural Biology, 45, 1–16.PubMedCrossRefGoogle Scholar
  15. Hendley, E. D., Cierpal, M. A., & McCarty, R. (1988). Sympathetic adrenal medullary response to stress in hyperactive and hypertensive rats. Physiology & Behavior, 44, 45–51.CrossRefGoogle Scholar
  16. Hunt, S. C., Williams, R. R., & Barlow, G. K. (1986). A comparison of positive family history definitions for defining risk of future disease. Journal of Chronic Diseases, 39, 809–821.PubMedCrossRefGoogle Scholar
  17. Julius, S., Randall, O. S., Esler, M. D., Kashima, T., Ellis, C., & Bennett, J. (1975). Altered cardiac responsiveness and regulation in the normal cardiac output type of borderline hypertension. Circulation Research, 36–37 (I) I199–I207.CrossRefGoogle Scholar
  18. Julius, S., Schork, N., & Schork, A. (1988). Sympathetic hyperactivity in early stages of hypertension: The Ann Arbor dataset. Journal of Cardiovascular Pharmacology, 12(3), S121–S129.PubMedCrossRefGoogle Scholar
  19. Julius, S., Li, Y., Brant, D., Krause, L., & Buda, A. J. (1989). Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Hypertension, 13, 422–428.PubMedCrossRefGoogle Scholar
  20. Kishi, K., & Inoue, T. (1990). Possible mechanisms of abnormal norepinephrine sensitivity and reactivity of resistance vessels and the development of hypertension in spontaneously hypertensive rats: A hypothesis. American Journal of Hypertension, 3, 2025–2055.CrossRefGoogle Scholar
  21. Knardahl, S., & Hendley, E. D. (1990). Association between cardiovascular reactivity to stress and hypertension or behavior. American Journal of Physiology, 259, H248–H257.PubMedGoogle Scholar
  22. Lawler, J. E., & Cox, R. H. (1985). The borderline hypertensive rat (BHR): A new model for the study of environmental factors in the development of hypertension. Pavlovian Journal of Biological Sciences, 30, 101–115.Google Scholar
  23. Lawler, J. E., Barker, G. F., Hubbard, J. W., & Allen, M. T. (1980). The effects of conflict on tonic levels of blood pressure in the genetically borderline hypertensive rat. Psychophysiology, 17, 363–370.PubMedCrossRefGoogle Scholar
  24. Lewanczuk, R. Z., Resnick, L. M., Blumenfeld, J. D., Laragh, J. H., & Pang, P. K. T. (1990). A new circulating hypertensive factor in the plasma of essential hypertensive subjects. Journal of Hypertension, 8, 105–108.PubMedCrossRefGoogle Scholar
  25. Mcllhaney, M. L., Shaffer, J. W., & Hines, E. A., Jr. (1975). The heritability of blood pressure: An investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Medical Journal, 136, 57–64.Google Scholar
  26. Mangiapane, M. L., Skoog, K. M., Rittenhouse, P., Blair, M. L., & Sladek, C. D. (1989). Lesion of the area postrema region attenuates hypertension in spontaneously hypertensive rats. Circulation Research, 64, 129–135.PubMedCrossRefGoogle Scholar
  27. Manuck, S. B., Kasprowicz, A. L., & Muldoon, M. F. (1990). Behaviorally evoked cardiovascular reactivity and hypertension: Conceptual issues and potential associations. Annals of Behavioral Medicine, 12, 17–29.CrossRefGoogle Scholar
  28. Montanari, A., Vallisa, D., Ragni, G., Guerra, A., Colla, R., Novarini, A., & Coruzzi, P. (1988). Abnormal renal responses to calcium entry blockade in normotensive offspring of hypertensive parents. Hypertension, 12, 498–505.PubMedCrossRefGoogle Scholar
  29. Munger, R. G., Prineas, R. J., & Gomez-Marin, O. (1988). Persistent elevation of blood pressure among children with a family history of hypertension: The Minneapolis children’s blood pressure study. Journal of Hypertension, 6, 647–653.PubMedCrossRefGoogle Scholar
  30. Owens, G. K., & Reidy, M. A. (1985). Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by aortic coarctation. Circulation Research, 57, 695–705.PubMedCrossRefGoogle Scholar
  31. Pang, P. K. T., Kaneko, T., & Lewanczuk, R. Z. (1990). Parathyroid origin of a new hypertensive factor. Experimental Gerontology, 25, 269–277.PubMedCrossRefGoogle Scholar
  32. Pillali, G., & Sutter, M. C. (1989). Effect of plasma from hypertensive patients on contractile response of vascular smooth muscle from normotensive rat. Journal of Physiology and Pharmacology, 67, 1272–1277.CrossRefGoogle Scholar
  33. Plunkett, W. C., & Overbeck, H. W. (1988). Arteriolar wall thickening in hypertensive rats unrelated to pressure or sympathetic influences. Circulation Research, 63, 937–943.PubMedCrossRefGoogle Scholar
  34. Rettig, R., Folberth, C., Kopf, D., Strauss, H., & Unger, T. (1990a). Role of the kidney in the pathogenesis of primary hypertension. Clinical and Experimental Hypertension—Theory and Practice, A12, 957–1002.CrossRefGoogle Scholar
  35. Rettig, R., Folberth, C., Strauss, H., Kopf, D., Waldherr, R., & Unger, T. (1990b). Role of the kidney in primary hypertension: A renal transplantation study in rats. American Journal of Physiology, 258, F606–F611.PubMedGoogle Scholar
  36. Sacerdoti, D., Escalante, B., Abraham, N. G., McGiff, J. C., Levere, R. D., & Schwartzman, M. L. (1989). Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science, 243, 388–391.PubMedCrossRefGoogle Scholar
  37. Sasakawa, O., Fujii, S., Nogi, O., Shinera, M., Tsumira, K., Seki, J., Wada, M., & Kobata, D. (1983). A study of long-term observations in borderline hypertension. Japanese Circulation Journal, 47, 300–308.PubMedCrossRefGoogle Scholar
  38. Sausen, K. P., Lovallo, W. R., & Wilson, M. F. (1991). Cardiovascular activity during cognitive challenge: Predictive strength of behavior pattern, heart rate reactivity, and familial hypertension. Psychophysiology, 28, 639–647.PubMedCrossRefGoogle Scholar
  39. Schieken, R. M., Clarke, W. R., & Lauer, R. M. (1981). Left ventricular hypertrophy in children with blood pressures in the upper quintile of the distribution: The Muscadine study. Hypertension, 3, 669–675.PubMedCrossRefGoogle Scholar
  40. Smith, P. G., Poston, C. W., & Mills, E. (1984). Ontogeny of neural and non-neural contributions to arterial blood pressure in spontaneously hypertensive rats. Hypertension, 6, 54–60.PubMedCrossRefGoogle Scholar
  41. Thompson, L. P., Bruner, C. A., Lamb, F. S., King, C. M., & Webb, R. C. (1987). Calcium influx and vascular reactivity in systemic hypertension. American Journal of Cardiology, 59, 29A–34A.PubMedCrossRefGoogle Scholar
  42. Trippodo, N. C., & Frohlich, E. D. (1981). Similarities of genetic (spontaneous) hypertension: Man and rat. Circulation Research, 48, 309–319.PubMedCrossRefGoogle Scholar
  43. Turner, J. R., Carroll, D., Sims, J., Hewitt, J. K., & Kelly, K. A. (1986). Temporal and inter-task consistency of heart rate reactivity during active psychological challenge: A twin study. Physiology & Behavior, 38, 641–644.CrossRefGoogle Scholar
  44. Unger, T., & Rettig, R. (1990). Development of genetic hypertension: Is there a “critical phase”?. Hypertension, 16, 615–616.PubMedCrossRefGoogle Scholar
  45. Woodworth, C. H., Knardahl, S., Sanders, B. J., Kirby, R. F., & Johnson, A. K. (1990). Dam strain affects cardiovascular reactivity to acute stress in BHR. Physiology & Behavior, 47, 139–144.CrossRefGoogle Scholar
  46. Yamori, Y., Matsumoto, M., Yamabe, H., & Okamoto, K. (1969). Augmentation of spontaneous hypertension by chronic stress in rats. Japanese Circulation Journal, 33, 399–409.PubMedCrossRefGoogle Scholar
  47. Yao, H., Matsumoto, T., Hirano, M., Kuroki, T., Tsutsumi, T., Uchimera, H., Nakamura, K., Nakahara, T., & Masatoshi, F. (1989). Involvement of brain stem noradrenergic neurons in the development of hypertension in spontaneously hypertensive rats. Neurochemical Research, 14, 75–79.PubMedCrossRefGoogle Scholar
  48. Zidek, W., Bachmann, J., Schlüter, H., Witzel, H., Storkebaum, W., & Sachinidis, A. (1990). Effect of plasma from essential hypertensives on tension of aortic strips. Clinical and Experimental Hypertension—Theory and Practice, A12, 365–381.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • William R. Lovallo
    • 1
  • Michael F. Wilson
    • 2
  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of Oklahoma Health Sciences Center, and Veterans Affairs Medical CenterOklahoma CityUSA
  2. 2.Department of MedicineUniversity of Oklahoma Health Sciences Center, and Veterans Affairs Medical CenterOklahoma CityUSA

Personalised recommendations