Perinatal

  • Eugene K. Emory
  • Tammy M. Savoie
  • Joan Ballard
  • Marion Eppler
  • Cynthia O’Dell
Part of the Critical Issues in Neuropsychology book series (CINP)

Abstract

Perinatal factors assume an uncertain role in neuropsychological development. We know that labor is a significant fetal stressor. Drastic shifts in oxygen level during gestation and labor are linked to a continuum of casualty from severe neurological impairments to more subtle disabilities. It is this latter set of disabilities, those of intangible origins, that remain the confounding chapter in developmental neuropsychology. Moreover, it is the infant who experiences perinatal stress, but who will not manifest developmental symptoms of disability until some years later, that causes early identification to be such a difficult task. This endeavor is undertaken by developmental neuropsychological studies of perinatal events. When the clinical neuropsychologist is involved in assessing a child with a benign developmental history who exhibits distinct deficits of an organic nature, pre- or perinatal hypoxia should be suspected. This prescription is grounded in the variable consequences of hypoxic injury and its tendency to produce subclinical, asymptomatic, and latent manifestations during early childhood (Scholz, 1956; Towbin, 1973).

Keywords

Cerebral Palsy Spina Bifida Fetal Heart Rate Perinatal Complication Perinatal Risk Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andre-Thomas, M., Chesni, Y, & Saint-Anne Dargassies, S. (1960). The neurological examination of the infant. London: Medical Advisory Committee of the National Spastics Society.Google Scholar
  2. Apgar, V. (1953). A proposal for a new method of evaluation of the newborn infant. Current Researches in Anesthesia and Analgesia, 32, 260–267.Google Scholar
  3. Avery, J. (1985). Neonatology: Pathophysiology and Management of the Newborn (2nd ed.). Philadelphia: Lippincott.Google Scholar
  4. Barden, T. & Peltzman, P. (1980). Newborn brain stem auditory evoked responses and perinatal events. American Journal of Obstetrics and Gynecology, 12, 912–919.Google Scholar
  5. Battaglia, F. C., & Meschia, G. (1986). An introduction to fetal physiology (pp. 49–95). New York: Academic Press.Google Scholar
  6. Bayley, N. (1969). Manual for the Bayley Scales of Infant Development. New York: Psychological Corporation.Google Scholar
  7. Beaumont, J. G. (1983). Introduction to neuropsychology. New York: Guilford Press.Google Scholar
  8. Bell, R., Weiler, G., & Waldrop, M. (1971). Newborn and preschooler: Organization of behavior and relations between periods. Monographs of the Society for Research in Child Development, 36.Google Scholar
  9. Brazelton, T. B. (1981). Clinical uses of the Brazelton Neonatal Assessment. In M. Coleman (ed.), Neonatal neurology (pp. 59–69). Baltimore: University Park Press.Google Scholar
  10. Butterbaugh, G. J. (1988). Selected psychometric and clinical review of neurodevelopmental infant tests. The Clinical Neuropsychologist, 2, 350–364.Google Scholar
  11. Caputo, D. & Mandell, W. (1970). Consequences of low birthweight. Developmental Psychology, 3, 363–383.Google Scholar
  12. Chik, L., Sokol, R., & Rosen, M. (1976). Prediction of one-minute Apgar score from fetal heart rate. Obstetrics and Gynecology, 48, 452–455.PubMedGoogle Scholar
  13. Cohen, S. E., Parmelee, A. H., Beckwith, L., & Sigman, M. (1986). Cognitive development in preterm infants: Birth to 8 years. Journal of Developmental and Behavioral Pediatrics, 7, 102–110.PubMedGoogle Scholar
  14. Crothers, B., & Paine, R. S. (1959). The natural history of cerebral palsy, Cambridge, Mass.: Harvard University Press.Google Scholar
  15. Davidson, R. J., & Fox, N. A. (1982). Asymmetrical brain activity discriminates between positive versus negative affective stimuli in human infants. Science, 218, 1235–1237.PubMedGoogle Scholar
  16. Dawes, G. S. (1968). Foetal and neonatal physiology. Chicago: Year Book Medical.Google Scholar
  17. DeLisi, L. E., Dauphinais, I. D., & Gershon, E. S. (1988). Perinatal complications and reduced size of brain limbic structures in familial schizophrenia. Schizophrenia Bulletin, 14, 185.PubMedGoogle Scholar
  18. DeSouza, S. W, & Richards, B. (1978). Neurological sequelae in newborn babies after perinatal asphyxia. Archives of Diseases in Childhood, 53, 564–569.Google Scholar
  19. Denckla, M. B. (1983). The neuropsychology of social-emotional learning disability. Archives of Neurology, 40, 461–462.PubMedGoogle Scholar
  20. Dinges, D., Davis, M., & Glass, P. (1980). Fetal exposure to narcotics: Neonatal sleep as a measure of nervous system disturbance. Science, 209, 619.PubMedGoogle Scholar
  21. Eliasson, G., Prensky, A., & Hardin, E. (1978). Neurological pathophysiology (2nd ed.). New York: Oxford University Press.Google Scholar
  22. Emory, E. K., & Mapp, J. R. (1988). Effects of respiratory distress and prematurity on spontaneous startle activity in neonates. Infant Behavior and Development, 11, 71–81.Google Scholar
  23. Emory, E. K., & Noonan, J. R. (1984a). Fetal cardiac responding: Maturational and behavioral correlates. Developmental Psychology, 20, 354–357.Google Scholar
  24. Emory, E. K., & Noonan, J. R. (1984b). Fetal cardiac responding: A correlate of birthweight and neonatal behavior. Child Development, 55, 1651–1657.PubMedGoogle Scholar
  25. Emory, E. K., Walker, E., & Cruz, A. (1982). Fetal heart rate. Part I: Factor analysis. Psychophysiology, 19, 680–686.PubMedGoogle Scholar
  26. Emory, E. K., Tynan, W. D, & Dave, R. (1989). Neurobehavioral anomalies in neonates with seizures. Journal of Experimental and Clinical Neuropsychology, 11, 231–240.Google Scholar
  27. Field, T. (1979). Interaction patterns of preterm and term infants. In T. Field, A. Sostek, S. Goldberg, & H. Shuman (Eds.), Infants born at risk (pp. 333–356). New York: Spectrum Publications.Google Scholar
  28. Fox, N. A. & Davidson, R. J. (1986). Taste-elicited changes in facial signs of emotion and the asymmetry of brain electrical activity in human newborns. Neuropsychologia, 24, 417–422.PubMedGoogle Scholar
  29. Francis, P. L., Self, P. A., & Horowitz, F. D. (1987). The behavioral assessment of the neonate: An overview. In J. D. Osofsky (Ed.), Handbook of child development (pp. 723–779). New York: Wiley.Google Scholar
  30. Frankenburg, W. K., & Dodds, J. B. (1967). The Denver Developmental Screening Test. Journal of Pediatrics, 71, 181–191.PubMedGoogle Scholar
  31. Fuller, P W., Guthrie, R. D., & Alvord, E. C., Jr. (1983). A proposed neuropathological basis for learning disabilities in children born prematurely. Developmental Medicine and Child Neurology, 25, 214–231.PubMedGoogle Scholar
  32. Gardner, R., & Weitzmann, E. (1967). Examination for optokinetic nystagmus in sleep and waking. Archives of Neurology, 16, 415–420.PubMedGoogle Scholar
  33. Goldman, P. S., & Nauta, W. J. H. (1977). An intricately patterned prefrontocaudate projection in the rhesus monkey. Journal of Comparative Neurology, 171, 369–386.Google Scholar
  34. Goldman-Rakic, P. S. (1985). Toward a neurobiology of cognitive development. In J. Mehler & R. Fox (Eds.), Neonate cognition: Beyond the blooming buzzing compulsion (pp. 285–306). Hillside, NJ: Erlbaum.Google Scholar
  35. Gray, J. W., & Dean, R. S. (in press). The effects of perinatal risk factors. Psychology in the School, 1, 15-21.Google Scholar
  36. Heilman, K. M., & Satz, P. (Eds.) (1983). Neuropsychology of human emotion. New York: Guilford Press.Google Scholar
  37. Hon, E. H. (1975). An introduction to fetal heart rate monitoring (2nd ed.). Los Angeles: University of Southern California Medical School Press.Google Scholar
  38. Huntington, L., Zeskind, P. S., & Weiseman, J. (1985). Spontaneous startle activity in newborn infants. Infant Behavior and Development, 8, 301–308.Google Scholar
  39. Hynd, G. W, & Willis, W. G. (1988). Pediatric Neuropsychology (pp. 21–45, 71-105). New York: Grune & Stratton.Google Scholar
  40. Isaacson, R. L. (1987). The limbic system. New York: Plenum Press.Google Scholar
  41. Kelly, D. (1981). Physiology of sleep and dreaming. In E. Kandel & J. Schwartz (Eds.), Principles of neural science (pp. 472–485). Amsterdam: Elsevier/North-Holland.Google Scholar
  42. Kessen, W. (1967). Sucking and looking. Two congenital patterns of behavior in the human newborn. In H. Stevenson, E. Hess, & H. Rheingold (Eds.), Early behavior. New York: Wiley.Google Scholar
  43. Knobloch, H., & Pasamanick, B. (1974). The Developmental Screening Inventory. In H. Knobloch & B. Pasamanick (Eds.), Gesell and Amatruda’s developmental diagnosis (3rd ed., pp. 343–355). New York: Harper & Row.Google Scholar
  44. Kopp, K., & Parmelee, A. (1979). Prenatal and perinatal influences on infant behavior. In J. Osofsky (Ed.), Handbook on infant development (pp. 29–75). New York: Wiley-Interscience.Google Scholar
  45. Lemire, R. J., Loeser, J. D., Leech, R. W, & Alvord, E. C. (1975). Normal and abnormal development of the human nervous system. New York: Harper & Row.Google Scholar
  46. Linde, L. M., Rasof, B., & Dunn, O. J. (1970). Longitudinal studies of intellectual and behavioral development in children with congenital heart disease. Acta Paediatrica Scandinavica, 59, 169–176.PubMedGoogle Scholar
  47. Little, W. S. (1862). On the influence of abnormal parturition, difficult labor, premature birth, and asphyxia neonatorum on the mental and physical condition of the child, especially in relation to deformities. Transaction of the Obstetric Society of London, 3, 293–344.Google Scholar
  48. Low, J., Galbraith, R., Sauerbrei, E., Muir, D, Killen, H., Pater, E., & Karchmar, E. J. (1986). Motor and cognitive development of infants with intraventricular hemorrhage, ventriculomegaly, or periventricular parenchymal lesions. American Journal of Obstetrics and Gynecology, 155, 750–755.PubMedGoogle Scholar
  49. Lubchenco, L. O. (1976). The high risk infant. Philadelphia: Saunders.Google Scholar
  50. Lubchenco, L. O., Horner, F. A., Reed, L. H., Hix, I. E., Metcalf, D, Cohig, R., Elliott, H. C., & Bourg, M. (1963). Sequelae of premature birth. Evaluation of premature infants of low birth weights at ten years of age. American Journal of Diseases of Children, 106, 101.PubMedGoogle Scholar
  51. Luria, A. (1973). The working brain: An introduction to neuropsychology. New York: Basic Books.Google Scholar
  52. Luria, A. R. (1980). Higher cortical functions in man (2nd ed.). New York: Basic Books.Google Scholar
  53. Mann, L. I. (1986). Pregnancy events and brain damage. American Journal of Obstetrics and Gynecology, 155, 6–8.PubMedGoogle Scholar
  54. Manniello, R. L., & Farrell, P. M. (1977). Analysis of United States neonatal mortality statistics from 1968 to 1974, with specific reference to changing trends in major casualties. American Journal of Obstetrics and Gynecology, 129, 667–674.PubMedGoogle Scholar
  55. Martin, C. Siassi, B., & Hon, E. (1974). Fetal heart rate patterns and neonatal death in low birthweight infants. Obstetrics and Gynecology, 44, 503–510.PubMedGoogle Scholar
  56. Matilainen, R. (1987). The value of correction for age in the assessment of prematurely born children. Early Human Development, 15, 257–264.PubMedGoogle Scholar
  57. McDonald, A. D. (1973). Severely retarded children in Quebec: Prevalence, causes and care. American Journal of Mental Deficiency, 78, 205–215.PubMedGoogle Scholar
  58. Murray, A. D. (1988). Newborn auditory brainstem evoked responses (ABRs): Prenatal and contemporary correlates. Child Development, 59, 571.PubMedGoogle Scholar
  59. Myers, R. E. (1975). Response of the primate fetus to asphyxia. In E. S. E. Hafez (Ed.), The mammalian fetus: Comparative biology and methodology (pp. 320–343). Springfield, Ill.: Thomas.Google Scholar
  60. Naeye, R. L. (1977). Placental infarction leading to fetal neonatal death: A prospective study. Obstetrics and Gynecology, 50, 583–588.PubMedGoogle Scholar
  61. Naeye, R. L., & Peters, E. (1987). Antenatal hypoxia and low IQ values. American Journal of Disabilities of Children, 141, 50–54.Google Scholar
  62. Nash, J. (1970). Developmental psychology: A psychobiological approach. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  63. Nass, R., & Koch, D. (1987). Temperament differences in toddlers with early unilateral right-and left-brain damage. Developmental Neuropsychology, 3, 93–99.Google Scholar
  64. Nelson, K. B., & Ellenberg, J. H. (1986). Antecedents of cerebral palsy. Multivariate analysis of risk. The New England Journal of Medicine, 315, 81–86.PubMedGoogle Scholar
  65. Niswander, K. R. (1989). Management of growth retardation with a view to preventing neuromotor dysfunction and mental handicaps. In F. Kubli, N. Patel, W. Schmidt, & Q Linderkamp (Eds.), Perinatal events and brain damage in surviving children (pp. 108–116). Berlin: Springer-Verlag.Google Scholar
  66. O’Dougherty, M., Wright, F. S., Gurmezy, N., Loevenson, R. B., & Torres, F. (1983). Later competence and adaptation in infants who survive severe heart deficits. Child Development, 54, 1129–1142.PubMedGoogle Scholar
  67. O’Dougherty, M., Neuchterlein, K. H., & Drew, B. (1984). Hyperactivity and hypoxic children: Signal detection, sustained attention, and behavior. Journal of Abnormal Psychology, 93, 178–191.PubMedGoogle Scholar
  68. O’Doughtery, M., Wright, F. S., Loevenson, R. B., & Torres, F. (1985). Cerebral dysfunction after chronic hypoxia in children. Neurology, 35, 42–46.Google Scholar
  69. O’Dougherty, M., Bernston, G. G., Boysen, S. T., Wright, F. S., & Teske, D. (1988). Psychophysiologi-cal predictors of attentional dysfunction in children with congenital heart defects. Psychophysiology, 25, 305–315.PubMedGoogle Scholar
  70. Okazaki, H. (1983). Fundamentals of neuropathology. New York: Igaku-Shoin.Google Scholar
  71. Painter, M. J., Depp, R., & O’Donaghue, P. D. (1978). Fetal heart rate patterns and development in the first year of life. American Journal of Obstetrics and Gynecology, 132, 271–276.PubMedGoogle Scholar
  72. Parmelee, A. H. (1975). Neurophysiological and behavioral organization of premature infants in the first months of life. Biological Psychiatry, 10, 501–512.PubMedGoogle Scholar
  73. Parmelee, A. H. (1986). Children’s illnesses: Their beneficial effects on behavioral development. Child Development, 57, 1–10.PubMedGoogle Scholar
  74. Prechtl, H. F. R., & Beintema, D. (1964). The neurological examination of the full-term newborn infant. London: Heinemann.Google Scholar
  75. Prechtl, H. F. R., Theorell, K., & Blair, A. W. (1973). Behavioral state cycles in abnormal infants. Developmental Medicine and Child Neurology, 15, 606–615.PubMedGoogle Scholar
  76. Prensky, A. L. (1975). Metabolic disorders of genetic origin: Disorders of amino, organic, and nucleic acids and carbohydrate metabolism. In D. B. Tower (Ed.), The nervous system (Vol. 2, pp. 205–217). New York: Raven Press.Google Scholar
  77. Quinn, P., & Rapoport, J. (1974). Minor physical anomalies and neurologic status in hyperactive boys. Pediatrics, 53, 742–747.PubMedGoogle Scholar
  78. Riegle, K. F. (1972). Influence of economic and political ideologies on the development of developmental psychology. Psychological Bulletin, 78, 129–141.Google Scholar
  79. Rourke, B. P., & Strang, J. D. (1983). Subtypes of reading and arithmetic disabilities: A neuropsychological analysis. In M. Rutter (Ed.), Developmental neuropsychiatry (pp. 473–488). New York: Guilford Press.Google Scholar
  80. Rourke, B. P., Bakker, D. J., Fisk, J. L., & Strang, J. D. (1985). Child neuropsychology: An introduction to theory, research and clinical practice (pp. 9–34). New York: Guilford Press.Google Scholar
  81. Rourke, B. P., Fisk, J. L., & Strang, J. D. (1986). Neuropsychological assessment of children. New York: Guilford Press.Google Scholar
  82. Rubin, R. A. & Balow, B. (1980). Infant neurological abnormalities as indicators of cognitive impairment. Developmental Medicine and Child Neurology, 22, 336.PubMedGoogle Scholar
  83. Russo, D., & Varni, J. (1982). Behavioral pediatrics. In D. Russo & J. Varni (Eds.), Behavioral pediatrics: Research and practice. New York: Plenum Press.Google Scholar
  84. Sameroff, A. J., & Chandler, M. J. (1975). Reproductive risk and the continuum of caretaking casualty. In F. D. Horowitz (Ed.), Review of child development research (Vol. 4, pp. 187–244). Chicago: University of Chicago Press.Google Scholar
  85. Scarr, S., & Williams, M. (1973). The effects of early stimulation on low birthweight infants. Child Development, 44, 94–101.Google Scholar
  86. Schechler & Halton (1982).Google Scholar
  87. Scholz, W. (1956). Die nicht zu Erweichung fuhrenden unvollstandigen Gewebsnekrosen (Elektive Parenchymnekrose). In F. Henke, O. Lubarsh, & R. Rossle (Eds.), Handbuch der Speziellen Pathologischen Anatomie und Histologie: Nervensystem (Vol. 13, Part 1, pp. 1284–1325). Berlin: Springer-Verlag.Google Scholar
  88. Self, P. A., & Horowitz, F. D. (1979). The behavioral assessment of the neonate: An overview. In J. D. Osofsky (Ed.), Handbook of infant development (pp. 723–779). New York: Wiley.Google Scholar
  89. Siegel, L. S. (1979). Infant perceptual, cognitive, and motor behaviors as predictors of subsequent cognitive and language development. Canadian Journal of Psychology, 33, 382–394.PubMedGoogle Scholar
  90. Silbert, A., Wolff, P H., Mayer, B., Rosenthal, A., & Nadas, A. S. (1969). Cyanotic heart disease and psychological development. Pediatrics, 43, 192–200.PubMedGoogle Scholar
  91. Silverton, L., Finello, K. M., Mednick, S. A., & Schulsinger, F. (1985). Low birth weight and ventricular enlargement in a high-risk sample. Journal of Abnormal Psychology, 94, 405–409.PubMedGoogle Scholar
  92. Smith, A. (1984). Early and long-term recovery from brain damage in children and adults: Evolution of concepts of localization, plasticity, and recovery. In C. R. Almli & S. Finger (Eds.), Early brain damage (Vol. 1, pp. 299–324). New York: Academic Press.Google Scholar
  93. Spreen, Q, Tupper, D., Risser, A., Tuokko, H., & Edgell, D. (1984). Human developmental neuropsychology. New York: Oxford University Press.Google Scholar
  94. Stevenson, J. E., Hawcroft, J., Lobascer, M., Smith, I., Wolff, Q H., & Graham, P. J. (1979). Behavioral deviance in children with early treated phenylketonuria. Archives of Disease in Childhood, 54, 14–18.PubMedGoogle Scholar
  95. Swaiman, K. F. (1989a). General aspects of the neurologic history. In K. F. Swaiman (Ed.), Pediatric neurology: Principles and practices (pp. 3–14). St. Louis: Mosby.Google Scholar
  96. Swaiman, K. F. (1989b). Neurologic examination of the older child. In K. F. Swaiman (Eds), Pediatric neurology: Principles and practices (pp. 15–35). St. Louis: Mosby.Google Scholar
  97. Touwen, B. C. L., & Huisjes, H. J. (1984). Obstetrics, neonatal neurology, and later outcome. In C. R. Almli & S. Finger (Eds.), Early brain damage (Vol. 1, pp. 169–187).Google Scholar
  98. Towbin, A. (1973). Syndrome of latent cerebral venous thrombosis: Its frequency and relation to age and congestive heart failure. Stroke, 4, 410.Google Scholar
  99. Towbin, A. (1977). Trauma in pregnancy-injury to the fetus and newborn. In C. G. Tedeschi, W. G. Eckert & L. G. Tedeschi (Eds.), Forensic medicine (Vol. 1, pp. 436–486). Philadelphia: Saunders.Google Scholar
  100. Towbin, A. (1978). Cerebral dysfunctions related to perinatal organic damage: Clinical-neuropathologic correlations. Journal of Abnormal Psychology, 87, 617–635.PubMedGoogle Scholar
  101. Towbin, A. (1980). Neuropathologic factors in minimal brain dysfunction. In H. Rie & E. Rie (Eds.), Handbook of minimal brain dysfunctions: A cortical view (pp. 169–187). New York: Wiley.Google Scholar
  102. Towbin, A. (1981). Neuropathological aspects: II. Perinatal brain damage and its sequels. In P. Black (Eds.), Brain dysfunction in children: Etiology, diagnosis, and management (pp. 47–77). New York: Raven Press.Google Scholar
  103. Towbin, A. (1986). Obstetric malpractice litigation: The pathologist view. American Journal of Obstetrics and Gynecology, 155, 927–935.PubMedGoogle Scholar
  104. Tranel, D., Hall, L.E., Olson, S., & Tranel, R. N. (1987). Evidence for a right-hemisphere developmental learning disability. Developmental Neuropsychology, 3, 113–127.Google Scholar
  105. Uzgiris, I. (1973). Patterns of cognitive development in infancy. Merrill-Palmer Quarterly, 19, 181–204.Google Scholar
  106. Visser, G. H. A. (1989). Antepartum fetal heart rate and movement pattern in relation to oxygenation and neonatal neurological morbidity. In: F. Kubli, N. Patal, W. Schmidt, & S. O. Linderkamp (Eds.), Perinatal events and brain damage in surviving children (pp. 131–136). Berlin: Springer-Verlag.Google Scholar
  107. Visser, G. H. A., Redman, C. W. G., Huisjes, H. J., & Turnbull, A. C. (1980). Nonstressed antepartum heart rate monitoring: Implications of decelerations after spontaneous contractions. American Journal of Obstetrics and Gynecology, 138, 429–435.PubMedGoogle Scholar
  108. Volpe, J. J. (1981). Neurology of the newborn. Philadelphia: Saunders.Google Scholar
  109. Watanabe, K., Miyazaki, S., Hara, K., & Hakamada, S. (1980). Behavioral state cycles, background EEG’s and prognosis of newborns with perinatal hypoxia. Electroencephalography and Clinical Neurophysiology, 49, 618–625.PubMedGoogle Scholar
  110. Weintraub, S., & Mesulam, M. M. (1983). Developmental learning disabilities and the right hemisphere: Emotional, interpersonal and cognitive components. Archives of Neurology, 40, 463–468.PubMedGoogle Scholar
  111. Williamson, W. D., Desmond, M. M., Wilson, G. S., Murphy, M. A., Rozelle, J., & Garcia-Prats, J. A. (1983). Survival of low-birth-weight infants with neonatal intraventricular hemorrhage. American Journal of Diseases of Childhood, 137, 1181–1184.Google Scholar
  112. Willis, W. G., & Widerstrom, A. H. (1986). Structure and function in prenatal and postnatal neuropsychological development: A dynamic interaction. In J. E. Obrzut & G. W. Hynd (Eds.), Child Neuropsychology (Vol. I). New York: Academic Press.Google Scholar
  113. Wilson, J. G. (1965). Embryological consideration in teratology. In J. G. Wilson & J. Warkany (Eds.), Teratology: Principles and techniques (pp. 251–261). Chicago: University of Chicago Press.Google Scholar
  114. Wilson, W. M. (1987). Age adjustment in psychological assessment of children born prematurely. Journal of Pediatric Psychology, 12, 445–450.PubMedGoogle Scholar
  115. Windle, W (1969). Brain damage by asphyxia at birth. Scientific American, 221, 76–84.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Eugene K. Emory
    • 1
  • Tammy M. Savoie
    • 1
  • Joan Ballard
    • 1
  • Marion Eppler
    • 1
  • Cynthia O’Dell
    • 1
  1. 1.Department of PsychologyEmory UniversityAtlantaUSA

Personalised recommendations