Neuropsychological Toxicology

  • David E. Hartman
Part of the Critical Issues in Neuropsychology book series (CINP)


The field of neuropsychological toxicology is a relatively recent offshoot of clinical neuropsychology that unites a variety of neuropsychological studies concerned with endogenous or exogenous toxin exposure. The substances capable of investigation by psychometric neuropsychological methods are as familiar as alcohol, and as obscure as aliphatic hydrocarbons. Some, like alcohol, lead, or toluene, have been the subjects of frequent investigation. Alternatively, little is known about the neuropsychological effects of other neurotoxicants, including allergens, biological toxins, many pharmaceuticals, industrial wastes, or even many commonly abused drugs, e.g., cocaine, PCP. The common thread tying these substances to a field called neuropsychological toxicology is that each substance is capable of inducing nervous system impairment, and those impairments can be detected by neuropsychological measures.


Carbon Disulfide Clinical Neuropsychology Neurotoxic Substance Paraquat Poisoning Fine Motor Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arlien-Soberg, P., Bruhn, P., Tyldensted, C., & Melgaard, B. (1979). Chronic painters syndrome. Chronic toxic encephalopathy in house painters. Acta Neurologica Scandinavica, 60, 149–156.CrossRefGoogle Scholar
  2. Arlien-Soberg, P., Zilstorff, K., Grandjean, B., & Milling-Pedersen, L. (1981). Vestibular dysfunction in occupational chronic solvent intoxication. Clinical Otolaryngology, 6, 285–293.CrossRefGoogle Scholar
  3. Atchison, W. J. (1989). Effects of neurotoxicants on synaptic transmission: Lessons learned from electrophysiological studies. Neurotoxicology and Teratology, 10, 393–416.CrossRefGoogle Scholar
  4. Babcock, H. (1930). An experiment in the measurement of mental deterioration. Archives of Psychology, 117, 1–61 [whole issue].Google Scholar
  5. Bahiga, L. M., Kotb, N. A., & El-Dessoukey, E. A. (1978). Neurological syndromes produced by some toxic metals encountered industrially or environmentally. Zeitschrift für Ernahrungswissen Schaft, 17, 84–88.CrossRefGoogle Scholar
  6. Bertoni, J. M., & Sprenkle, P. M. (1988). Lead acutely reduces glucose utilization in the rat brain especially in higher auditory centers. NeuroToxicology, 9, 235–242.PubMedGoogle Scholar
  7. Bhattacharya, A., Shukla, R., Bornschein, R., Dietrich, K., & Kopke, J. E. (1988). Postural disequilibrium quantification in children with chronic lead exposure: A pilot study. NeuroToxicology, 9, 327–340.PubMedGoogle Scholar
  8. Bieliauskas, L. (1990). Review of neuropsychological toxicology and neurotoxins in clinical practice. The Clinical Neuropsychologist, 4, 86–93.CrossRefGoogle Scholar
  9. Binder, L. M., & Pankratz (1987). Neuropsychological evidence of a factitious memory complaint. Journal of Clinical and Experimental Neuropsychology, 9, 167–171.PubMedCrossRefGoogle Scholar
  10. Bjornaes, S., & Naalsund, L. U. (1988). Biochemical changes in different brain areas after toluene inhalation. Toxicology, 49, 367–374.PubMedCrossRefGoogle Scholar
  11. Bleecker, M. (1988). Parkinsonism: A clinical marker of exposure to neurotoxins. Neurotoxicology and Teratology, 10, 475–478.PubMedCrossRefGoogle Scholar
  12. Braun, C. M. J., Diagneault, S., & Gilbert, B. (1989). Color discrimination testing reveals early printshop neurotoxicity better than a neuropsychological test battery. Archives of Clinical Neuropsychology, 4, 1–13.PubMedGoogle Scholar
  13. Costa, L. G. (1988). Interactions of neurotoxicants with neurotransmitter systems. Toxicology, 49, 359–366.PubMedCrossRefGoogle Scholar
  14. Cote, L., & Crutcher, M. D. (1985). Motor functions of the basal ganglia and diseases of transmitter metabolism. In E. R. Kandel & J. H. Schwartz (Eds.), Principles of neural science (pp. 523-535). Elsevier.Google Scholar
  15. Cranmer, J. M., & Goldberg, L. (Eds.). (1986). Proceedings of the Workshop on Neurobehavioral Effects of Solvents. NeuroToxicology, 7(4), 1–95.Google Scholar
  16. Crider, R. A., & Rouse, B. A. (1988). Inhalant overview. In R. A. Crider & B. A. Rouse (Eds.), Epidemiology of inhalant abuse: An update (pp. 1–7). NIDA Research Monograph 85, DHHS 88-1577.Google Scholar
  17. Crome, P. (1986). Paraquat poisoning. Lancet, 1, 333–334.CrossRefGoogle Scholar
  18. DeLuca, J. W. (1989). Neuropsychology technicians in clinical practice: Precedents, rationale, and current deployment. The Clinical Neuropsychologist, 3, 3–21.CrossRefGoogle Scholar
  19. Dyer, R. S. (1990). Evoked potentials: Physiological methods with human applications. In B. L. Johnson (Ed.), Advances in Neurobehavioral Toxicology, (pp. 165–174). Chelsea, MI: Lewis Publishers.Google Scholar
  20. Farnsworth, D. (1957). The Farnsworth-Munsell 100 Hue test manual. Baltimore: Macbeth Corp.Google Scholar
  21. Freed, D. M., & Kandel, E. (1988). Long-term occupational exposure and the diagnosis of dementia. NeuroToxicology, 9, 391–400.PubMedGoogle Scholar
  22. Goetz, C. G. (1985). Neurotoxins in clinical practice. New York: Spectrum Publications.Google Scholar
  23. Goldman-Rakic, P. S. (1987). Circuit basis of a cognitive function in non-human primates. In S. M. Stahl, S. D. Iversen, & E. C. Goodman (Eds.), Cognitive neurochemistry (pp. 90–110). New York: Oxford University Press.Google Scholar
  24. Hänninen, H. (1971). Psychological picture of manifest and latent carbon disulphide poisoning. British Journal of Industrial Medicine, 28, 374–381.PubMedGoogle Scholar
  25. Hänninen, H. (1988). The psychological performance profile in occupational intoxications. Neurotoxicology and Teratology, 10, 485–488.PubMedCrossRefGoogle Scholar
  26. Hartman, D. E. (1988a). Neuropsychology and the neurochemical lesion: Evolution, applications and extensions. NeuroToxicology, 9(3), 401–404.PubMedGoogle Scholar
  27. Hartman, D. E. (1988b). Neuropsychological toxicology. Identification and assessment of human neurotoxic syndromes. Elmsford, N.Y.: Pergamon Press.Google Scholar
  28. Hartman, D. E., & Hessl, S. (in press). Adverse effects of pollutant exposure: Neurobehavioral disorders. In A. Tarcher (Ed.), Principles and practice of environmental medicine. New York: Plenum Press.Google Scholar
  29. Heaton, J. M. (1962). Chronic cyanide poisoning and optic neuritis. Transactions of the Ophthalmological Society of the United Kingdom, 82, 263–269.Google Scholar
  30. Hirano, A., & Llena, J. F. (1980). The central nervous system as a target in toxic-metabolic states. In P. S. Spencer & H. H. Schaumburg (Eds.), Experimental and clinical neurotoxicology (pp. 24–34). Baltimore: Williams & Wilkins.Google Scholar
  31. Hisock, M., & Hisock, C. K. (1989). Refining the forced-choice method for the detection of malingering. Journal of Clinical and Experimental Neuropsychology, 11, 967–974.CrossRefGoogle Scholar
  32. Ho, I. K. (1988). Interactions in neurotoxicology. Neurotoxicology, 9, 151–152.Google Scholar
  33. Hoch, A. (1904). A review of some psychological and physiological experiments done in connection with the study of mental diseases. Psychological Bulletin, 1, 241–257.CrossRefGoogle Scholar
  34. Hughes, J. T. (1988). Brain damage due to paraquat poisoning: A fatal case with neuropathological examination of the brain. NeuroToxicology, 9, 243–248.PubMedGoogle Scholar
  35. Kandel, E. R., & Schwartz, J. H. (Eds.). (1985). Principles of neural science (2nd ed.). Amsterdam: Elsevier.Google Scholar
  36. Klaassen, C. D., Amdur, M. O., & Doull, J. (Eds.). (1986). Toxicology: The basic science of poisons. New York: Macmillan Co.Google Scholar
  37. Kolb, L. C. (1987). A neuropsychological hypothesis explaining post-traumatic stress disorders. American Journal of Psychiatry, 144, 989–995.PubMedGoogle Scholar
  38. Landrigan, P. J., Kreiss, K., Xintaras, C., Feldman, R. G., & Heath, C. W., Jr. (1980). clinical epidemiology of occupational neurotoxic disease. Neurobehavioral Toxicology, 2, 43–48.PubMedGoogle Scholar
  39. Luria, A. (1973). The working brain. New York: Basic Books.Google Scholar
  40. Mailman, R. B., & Lewis, M. H. (1987). Neurotoxicants and central catecholamine systems. Neurotoxicology, 8(1), 123–140.PubMedGoogle Scholar
  41. Maroni, M., & Barbieri, F. (1989). Biological indicators of neurotoxicity in central and peripheral toxic neuropathies. Neurotoxicology and Teratology, 10, 479–484.CrossRefGoogle Scholar
  42. Matarazzo, J. D. (1972). Wechsler’s measurement and appraisal of adult intelligence. Baltimore: Williams & Wilkins.Google Scholar
  43. Mergler, D, & Blain, L. (1987). Assessing color vision loss among solvent-exposed workers. American Journal of Industrial Medicine, 12, 195–203.PubMedCrossRefGoogle Scholar
  44. Mergler, D, Blain, L., & Lagace, J. P. (1987). Solvent-related color vision loss: An indicator of neural damage? International Archives of Occupational and Environmental Health, 59, 313–321.PubMedCrossRefGoogle Scholar
  45. Mergler, D., Belanger, S., de Grosbois, S., & Vachon, N. (1988). Chromai focus of acquired chromatic discrimination loss and solvent exposure among printshop workers. Journal of Toxicology, 49, 341–348.CrossRefGoogle Scholar
  46. Mutti, A., & Franchini, I. (1987). Toxicity of metabolites to dopaminergic systems and the behavioral effects of organic solvents. British Journal of Industrial Medicine, 44, 721–723.PubMedGoogle Scholar
  47. Mutti, A., Falzio, M., Romanelli, M. C., Bocchi, C., Ferroni, C., & Franchini, I. (1988). Brain dopamine as a target for solvent toxicity: Effects of some monocyclic aromatic hydrocarbons. Toxicology, 49, 77–82.PubMedCrossRefGoogle Scholar
  48. Norton, S. (1986). Toxic responses of the central nervous system. In C. D. Klaassen, M. O. Amdur, & J. Doull (Eds.), Toxicology: The Basic science of poisons (pp. 359–386). New York: Macmillan Co.Google Scholar
  49. Nylen, P. R. (1985). Neurophysiological methods. Scandinavian Journal of Work Environment and Health, 2 (Suppl. 1), 95–96.Google Scholar
  50. Oades, R. D. (1987). Attentional deficit disorder with hyperactivity (ADDH): The contribution of catecholaminergic activity. Progress in Neurobiology, 29, 365–391.PubMedCrossRefGoogle Scholar
  51. O’Callaghan, J. P. (1989). Neurotypic and gliotypic proteins as biochemical markers of neurotoxicity. Neurotoxicology and teratology, 10, 445–452.CrossRefGoogle Scholar
  52. Otto, D, Robinson, G., Baumann, S., Schroeder, S., Mushak, P., Kleinbaum, D., & Boone, L. (1985). 5-year follow-up study of children with low-to-moderate lead absorption: Electro-physiological evaluation. Environmental Research, 38, 168–186.PubMedCrossRefGoogle Scholar
  53. Parsons, O. (1970). Clinical neuropsychology. Current Topics in Clinical and Community Psychology, 2, 1–60.Google Scholar
  54. Parsons, O. (1986). Overview of the Halstead-Reitan Battery. In T. Incagnoli, G. Goldstein, & C. J. Golden (Eds.), Clinical application of neuropsychological test batteries (pp. 155–192). New York: Plenum Press.CrossRefGoogle Scholar
  55. Perlick, D, Stastny, P., Katz, I., Mayer, M., & Mattis, S. (1986). Memory deficits and anticholinergic levels in chronic schizophrenia. American Journal of Psychiatry, 143, 230–232.PubMedGoogle Scholar
  56. Pickens, R. W., & Svikis, D. S. (1988). Genetic vulnerability to drug abuse. In R. W. Pickens & D. S. Svikis (Eds.), Biological vulnerability to drug abuse (pp. 1-8). NIDA Research Monograph 89, DHHS Publ. (ADM)88-1590.Google Scholar
  57. Reitan, R. (1955). Certain differential effects of left and right cerebral lesions in human adults. Journal of Comparative and Physiological Psychology, 48, 474–477.PubMedCrossRefGoogle Scholar
  58. Rosenberg, N. L., Spitz, M. C., Filley, C. M., Davis, K. A., & Schaumberg, H. H. (1988). Central nervous system effects of chronic toluene abuse—Clinical, brainstem evoked response and magnetic resonance imaging studies. Neurotoxicology and Teratology, 10, 489–495.PubMedCrossRefGoogle Scholar
  59. Rufener, B. L., et al. (1977). Management effectiveness measures for NIDA drug abuse treatment programs, Volume II: Costs to society of drug abuse. NIDA, Contract 271-75-1016.Google Scholar
  60. Ruscak, M., Ruscakova, D, & Hager, H. (1968). The role of the neuronal cell in the metabolism of the rat cerebral cortex. Physiologica Bohemoslov, 17, 113–121 [translation].Google Scholar
  61. Russell, E. W, Neuringer, C., & Goldstein, G. (1970). Assessment of brain damage: A neuropsychological key approach. New York: Wiley-Interscience.Google Scholar
  62. Schaeffer, K. W., Parsons, O. A., & Yohman, J. R. (1984). Neuropsychological differences between male familial and nonfamilial alcoholics and non-alcoholics. Alcoholism: Clinical and Experimental Research, 8 347–351.CrossRefGoogle Scholar
  63. Schuttmann, W., Bohn, E., & Hager, G. (1971). Neuritis of the optic nerve as a monosymptomatic form of lead poisoning. Zeitschrift für die gesamte Hygiene und ihre Grenzebiete, 17, 342–348.Google Scholar
  64. Silbergeld, E. (1982). Current status of neurotoxicology, basic and applied. Trends in Neuroscience, 291-294.Google Scholar
  65. Spencer, P. (1988). Introductory address. Presented at the Third International Symposium on Neurobehavioral Methods in Occupational and Environmental Health. Washington, D.C.: World Health Organization.Google Scholar
  66. Spencer, P., & Schaumburg, H. H. (1980). Experimental and clinical neurotoxicology. Baltimore: Williams & Wilkins.Google Scholar
  67. Stahl, S. M., Iversen, S. D., & Goodman, E. C. (Eds.). (1987). Cognitive neurochemistry. New York: Oxford University Press.Google Scholar
  68. Stern, Y, & Langston, J. W. (1985). Intellectual changes in patients with MPTP-induced parkinsonism. Neurology, 35, 1506–1509.PubMedCrossRefGoogle Scholar
  69. Tarter, R. E., Hegedus, A. M., Goldstein, G., Shelly, C., & Alterman, A. (1984). Adolescent sons of alcoholics: Neuropsychological and personality characteristics. Alcohol: Clinical and Experimental Research, 8, 216–222.CrossRefGoogle Scholar
  70. Tarter, R. E., Van Thiel, D. H., & Edwards, K. L. (1988). Medical neuropsychology. New York: Plenum Press.CrossRefGoogle Scholar
  71. Tune, L. E., Strauss, M. E., Lew, M. F., Breitlinger, E., & Coyle, J. T. (1982). Serum levels of anticholinergic drugs and impaired recent memory in chronic schizophrenic patients. American Journal of Psychiatry, 139, 1460–1461.PubMedGoogle Scholar
  72. Vesell, E. S. (1987). Pharmacogenetic perspectives on susceptibility to toxic industrial chemicals. British Journal of Industrial Medicine, 44, 505–509.PubMedGoogle Scholar
  73. White, R. G., & Feldman, R. H. (1987). Neuropsychological assessment of toxic encephalopathy. American Journal of Industrial Medicine, 11, 395–398.PubMedCrossRefGoogle Scholar
  74. Wilson, J. R., (1988). Individual differences in drug response. In R. W Pickens & D. S. Svikis (Eds.), Biological vulnerability to drug abuse (pp. 93-107). NIDA Research Monograph 89, DHHS Publ. (ADM)88-1590.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • David E. Hartman
    • 1
  1. 1.Department of Psychiatry, Cook County HospitalUniversity of Illinois Medical CenterChicagoUSA

Personalised recommendations