Advertisement

Nondestructive Evaluation of Wood—Past, Present, and Future

  • Robert J. Ross
  • Roy F. Pellerin

Abstract

Nondestructive evaluation (NDE) of materials is, by definition, the science of identifying the physical and mechanical properties of a piece of material without altering its end-use capabilities. Such evaluations rely upon nondestructive testing (NDT) techniques or “tools” to provide accurate information pertaining to the properties and performance of the material in question.

Keywords

Nondestructive Test Stress Wave Wood Structure Laminate Veneer Lumber Forest Prod 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthony, R. W., and Bodig, J. 1989, Nondestructive evaluation of timber structures for reliable performance. Proceedings of the Second Pacific Timber Engineering Conference. Aug. 28-31, 1989. Auckland, New Zealand.Google Scholar
  2. 2.
    Beall, F. C, and Wilcox, W. W., 1986, Relationship of acoustic emission to mass loss from decay during radial compressive testing. Unpublished research note, Weyerhaeuser Company, Tacoma, WA.Google Scholar
  3. 3.
    Bechtel, F. K., and Allen, J. R., 1987, Methods of implementing grain angle measurements in the machine stress rating process. Proceedings of the Sixth Symposium on Nondestructive Testing of Wood. Sept. 14-16, 1987. Washington State University, Pullman, WA. pp. 303–353.Google Scholar
  4. 4.
    Bell, E. R., Peck, E. C, and Krueger, N. T., 1950, Youngs modulus of wood determined by a dynamic method. Report 1775. U. S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.Google Scholar
  5. 5.
    Browne, C. M., and Kuchar, W. E., 1985, Determination of material properties for structural evaluation of TRESTLE. Proceedings of the Fifth International Nondestructive Testing of Wood Symposium. Sept. 9-11, 1985. Washington State University, Pullman, WA.Google Scholar
  6. 6.
    Chudnoff, M., Eslyn, W. E., and McKeever, D. B., 1984, Decay in mine timbers: Part III, Species-independent stress grading. Forest Prod. J., 34(3):43–50.Google Scholar
  7. 7.
    Cramer, S. M., and McDonald, K. A., 1989, Predicting lumber tensile stiffness and strength with local grain angle measurements and failure analysis. Wood and Fiber Sci., 21(4): 393–410.Google Scholar
  8. 8.
    Dunlop, J. I., 1983, Testing of poles by acoustic resonance. Wood Sci. Technol., 17:31–38.CrossRefGoogle Scholar
  9. 9.
    Galiginaitis, S. V., Bell, E. R., Fine, A. M., Auer, G., and Roy, J., 1954, Nondestructive testing of wood laminates. Final Report, Office of Naval Research, University of Louisville, Institute of Industrial Research.Google Scholar
  10. 10.
    Galligan, W. L., Snodgrass, D. V., and Crow, G. W., 1977, Machine stress rating: practical concerns for lumber producers. FPL-GTR-7, U. S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.Google Scholar
  11. 11.
    Geske, E. A., Ross, R. J., Larson, G., and Murphy, J. F., 1989, PC-Based E measurement. Proceedings of Seventh Nondestructive Testing of Wood Symposium. Sept. 27-29, 1989. Washington State University, Pullman, WA.Google Scholar
  12. 12.
    Hoyle, R. J., 1961, A nondestructive test for stiffness of structural lumber. Forest Prod. J., 11(6):251–254.Google Scholar
  13. 13.
    Hoyle, R. J., and Pellerin, R. F., 1978, Stress wave inspection of a wood structure. Proceedings of Fourth Nondestructive Testing of Wood Symposium. Aug. 28-30, 1978. Washington State University, Pullman, WA.Google Scholar
  14. 14.
    Hoyle, R. J., and Rutherford, P. S., 1987, Stress wave inspection of bridge timbers and decking. Final Report for Research Project Y-3400. Department of Civil and Environmental Engineering, Washington State University, Pullman, WA.Google Scholar
  15. 15.
    James, W. L., 1959, A method for rapid measurement of the rate of decay of free vibrations. Bulletin 2154, U. S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.Google Scholar
  16. 16.
    Jayne, B. A., 1955, A nondestructive test of glue bond quality. Forest Prod. J., 5(5): 294–301.Google Scholar
  17. 17.
    Jayne, B. A., 1959, Vibrational properties of wood as indices of quality. Forest Prod. J., 9(11):413–416.Google Scholar
  18. 18.
    Kaiserlik, J. H., and Pellerin, R. F., 1977, Stress wave attenuation as an indicator of lumber strength. Forest Prod. J., 27(6):39–43.Google Scholar
  19. 19.
    McKean, H. B., and Hoyle, R. J., 1962, Stress grading method for dimension lumber. ASTM Special Tech. Pub. No. 353. American Society of Testing and Materials, Philadelphia, PA.Google Scholar
  20. 20.
    Murphy, M. W., Franklin, D. E., and Palylyk, R. A., 1987, A nondestructive testing technique for wood poles. British Columbia Hydro Research and Development, Surrey, British Columbia.Google Scholar
  21. 21.
    Neal, D. W., 1985, Establishment of elastic properties for in-place timber structures. Proceedings of Fifth Nondestructive Testing of Wood Symposium. Sept. 9-11, 1985. Washington State University, Pullman, WA.Google Scholar
  22. 22.
    Patton-Mallory, M., and DeGroot, R. C, 1989, Acousto-ultrasonics for evaluating decayed wood products. Proceedings of the Second Pacific Timber Engineering Conference. Aug. 28-31, 1989. Auckland, New Zealand.Google Scholar
  23. 23.
    Pellerin, R. F., 1965, A vibrational approach to nondestructive testing of structural lumber. Forest Prod. J., 15(3):93–101.Google Scholar
  24. 24.
    Pellerin, R. F., 1989, Inspection of wood structures for decay using stress waves. Proceedings of the Second Pacific Timber Engineering Conference. Aug. 28-31, 1989. Auckland, New Zealand.Google Scholar
  25. 25.
    Pellerin, R. F., DeGroot, R. C, and Esenther, G. R., 1985, Nondestructive stress wave measurements of decay and termite attack in experimental wood units. Proceedings of Fifth Nondestructive Testing of Wood Symposium. Sept. 9-11, 1985. Washington State University, Pullman, WA.Google Scholar
  26. 26.
    Pellerin, R. F., and Morschauser, C. R., 1974. Nondestructive testing of particleboard. Proceedings of Seventh International Particleboard Symposium. March 1973. Washington State University, Pullman, WA.Google Scholar
  27. 27.
    Ross, R. J., 1984, Stress wave speed and attenuation as predictors of the tensile and flexural properties of wood-based particle composites. Ph. D. Dissertation, Washington State University, Pullman, WA.Google Scholar
  28. 28.
    Ross, R. J., and Pellerin, R. F., 1988, NDE of wood-based composites with longitudinal stress waves. Forest Prod. J., 38(5):39–45.Google Scholar
  29. 29.
    Rutherford, P. S., 1987, Nondestructive stress wave measurement of incipient decay in Douglas-fir. M. S. Thesis, Washington State University, Pullman, WA.Google Scholar
  30. 30.
    Senft, J. F., Suddarth, S. K., and Angleton, R. D., 1962, A new approach to stress grading of lumber. Forest Prod. J., 12(4):183–186.Google Scholar
  31. 31.
    Sharp, D. J., 1985, Nondestructive testing techniques for manufacturing LVL and predicting performance. Proceedings of Fifth Nondestructive Testing of Wood Symposium. Sept. 9-11, 1985. Washington State University, Pullman, WA.Google Scholar
  32. 32.
    Vogt, J. J., 1985, Evaluation of the tensile and flexural properties and internal bond of medium density fiberboard using stress wave speed and attenuation. M. S. Thesis, Washington State University, Pullman, WA.Google Scholar
  33. 33.
    Vogt, J. J., 1986, Longitudinal stress waves as predictors of internal bond strength. Proceedings of Twentieth International Particleboard/Composite Materials Symposium. March 1986. Washington State University, Pullman, WA.Google Scholar
  34. 34.
    Wang, S. C, Suchsland, O., and Hart, J. H., 1980, Dynamic test for evaluating decay in wood. Forest Prod. J., 30(7):35–37.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Robert J. Ross
    • 1
  • Roy F. Pellerin
    • 2
  1. 1.Forest Products LaboratoryUSDA Forest ServiceMadisonUSA
  2. 2.Washington State UniversityPullmanUSA

Personalised recommendations