Advertisement

Laser Generation and Interferometric Detection of Ultrasound in Anisotropic Materials

  • James B. Spicer
  • Andrew D. W. McKie
  • John B. DeatonJr.
  • James W. Wagner

Abstract

Current investigation into the influences of material anisotropy on the signature of laser generated waveforms in single crystals using interferometric detection has shown that the orientation of the lattice not only influences the speed of wave propagation but also the overall shape of the detected waveform. In few grained crystalline materials which exhibit strong anisotropy, the misorientation of grains relative to one another may be observed in the signature of detected waveforms. As a result of the reproducibility and the inherent directivity of laser generated ultrasound, the lattice orientation of a specimen relative to its boundaries may be inferred by observing both wave velocities and wave signatures.

Keywords

Material Anisotropy Line Source Laser Generation Lattice Orientation Order Elastic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Hass and L. Hadley, Optical Properties of Metals, in: “American Institute of Physics Handbook,” D. E. Gray, ed., McGraw-Hill, New York (1972).Google Scholar
  2. 2.
    U. Schleichert, K. Langenberg, W. Arnold, and S. Fasbender, A Quantitative Theory of Laser-generated Ultrasound, in: “Review of Progress in Quantitative Nondestructive Evaluation,” Vol. 8A, D. Thompson and D. Chimenti, eds., Plenum Press, New York (1989).Google Scholar
  3. 3.
    W. Nowacki, “Dynamic Problems of Thermoelasticity,” Noordhoff, Leyden, The Netherlands (1975).Google Scholar
  4. 4.
    J. F. Nye, “Physical Properties of Crystals,” Oxford University Press, London (1957).Google Scholar
  5. 5.
    J. W. Maclachlan and J. C. Murphy, Anisotropy in Thermoacoustic Imaging of Single Crystals, in: “Photoacoustic and Photothermal Phenomena,” P. Hess and J. Pelzl, eds., Springer-Verlag, Berlin (1988).Google Scholar
  6. 6.
    C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, Laser Generation of Ultrasound in Metals, in: “Research Techniques in Nondestructive Testing,” Vol. V, R. S. Sharpe, ed., Academic Press, New York (1982).Google Scholar
  7. 7.
    J. D. Aussei, A. Le Brun, and J. C. Baboux, Generating acoustic waves by laser: theoretical and experimental study of the emission source, Ultrasonics 26:245 (1988).CrossRefGoogle Scholar
  8. 8.
    R. J. Dewhurst, C. E. Edwards, A. D. W. McKie, and S. B. Palmer, Comparative study of wide-band ultrasonic transducers, Ultrasonics 25:315 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • James B. Spicer
    • 1
  • Andrew D. W. McKie
    • 1
  • John B. DeatonJr.
    • 1
  • James W. Wagner
    • 1
  1. 1.Center for Nondestructive EvaluationThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations