An Automatic Instrument for the Ultrasonic Measurement of Texture

  • Emmanuel P. Papadakis
  • R. Bruce Thompson
  • Delwyn D. Bluhm
  • George A. Alers
  • Kaveh Forouraghi
  • Harold D. Skank
  • Samuel J. Wormley


Texture in sheet metal must be controlled in the rolling process to assure the fabrication properties desired in later manufacturing. Drawability is one of the required engineering properties in a family of applications including the manufacture of beverage cans, propane tanks, and automotive parts.


Ultrasonic Velocity Orientation Distribution Function Lamb Wave Plastic Anisotropy Ultrasonic Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. C. Liu and G. A. Alers, The anisotropy of young’s modulus in cold-rolled sheets of binary Cu-Zn alloys, Trans. Met. Soc. AIME 236: 489 (1966).Google Scholar
  2. 2.
    E. P. Papadakis, Elastic wave velocities in cube-textured copper sheet, Trans. Met. Soc. ATME 236: 1609 (1966).Google Scholar
  3. 3.
    E. P. Papadakis, Elastic wave velocities in various alloy strips, Metall. Trans. 2: 575 (1971).CrossRefGoogle Scholar
  4. 4.
    C. A. Stickels and P. R. Mould, The use of Young’s modulus for predicting the plastic-strain ratio of low-carbon steel sheets, Met. Trans. 1: 1303 (1970).Google Scholar
  5. 5.
    P. R. Mould and T. E. Johnson, Rapid assessment of drawability of cold-rolled low-carbon steel sheets, Sheet Metal Industries 328 (1973).Google Scholar
  6. 6.
    R. J. Roe, Inversion of pole figures for materials having elastic anisotropy, J. Appl. Phys. 37: 2069 (1966).CrossRefGoogle Scholar
  7. 7.
    H. J. Bunge, “Mathematische Methoden der Texturanalyse”, Akademie-Verlag, Berlin, (1969).Google Scholar
  8. 8.
    G. T. Davies, D. J. Goodwill and R. S. Kallend, Elastic and plastic anisotropy in sheets of cubic metals, Met. Trans. 3: 1677 (1972).Google Scholar
  9. 9.
    G. A. Alers, G. Huebschen, B. W. Maxfield, W. Repplinger, J. Salzburger, R. B. Thompson and A. Wilbrand, Electromagnetic acoustic transducers in: “Nondestructive Testing Handbook” ASNT, Columbus, Ohio, in press.Google Scholar
  10. 10.
    R. B. Thompson, Physical principles of measurements with EMAT transducers, in: Ultrasonic measurement methods, R. N. Thurston and A. D. Pierce, eds., Academic Press, N. Y., (1990), p. 157.Google Scholar
  11. 11.
    Y. Li and R. B. Thompson, Influence of anisotropy on the dispersion characteristics of guided ultrasonic plate modes, J. Acoust. Soc. Amer 87: 1911 (1990).CrossRefGoogle Scholar
  12. 12.
    R. B. Thompson, Electromagnetic, Noncontact Transducers, in: 1973 Ultrasonics Symposium Proceedings, J. de Klerk, ed., IEEE, New York (1973), p. 385.CrossRefGoogle Scholar
  13. 13.
    R. B. Thompson, J. F. Smith and S. S. Lee, Inference of stress and texture from the angular dépendance of ultrasonic plate mode velocities, in: “NDE of microstructure for process control”, H. N. G. Wadley, ed., ASM, Metals Park, OH (1985), p. 7.Google Scholar
  14. 14.
    R. B. Thompson, S. S. Lee and J. F. Smith, Relative anisotropies of plane waves and guided modes in thin orthorhombic plates: implication for texture characterization, Ultrasonics 25: 133 (1987).CrossRefGoogle Scholar
  15. 15.
    R. B. Thompson, S. S. Lee, J. F. Smith and G. C. Johnson, A comparison of ultrasonic and x-ray determinations of texture in thin Cu and Al plates, Met. Trans. 20A: 243 (1989).Google Scholar
  16. 16.
    M. Hirao, H. Fukuoka, K. Fujisawa and R. Murayama, Ultrasonic characterization texture in zinc-coated steel sheets, in: “Elastic waves and ultrasonic nondestructive evaluation” North-Holland, Amsterdam, (1990), p. 319.Google Scholar
  17. 17.
    M. Spies and E. Schneider, Nondestructive analysis of the deep-drawing behavior of rolling sheets with ultrasonic techniques, in: “Nondestructive characterization of materials”, Springer-Verlag, Berlin, (1989), p. 296.CrossRefGoogle Scholar
  18. 18.
    O. Cassier, C. Donadille and B. Bacroix, Lankford coefficient evaluation in steel sheets by an ultrasonic method, ibid, p. 303.Google Scholar
  19. 19.
    K. Sakata, D. Daniel, J. J. Jonas and J. F. Bussiere, Acoustoelastic determination of the higher order ODF coefficients up to 1 = 12 and their use for the on-line prediction of r-value, Met. Trans. (in press).Google Scholar
  20. 20.
    R. B. Thompson and A. V. Clark, Jr., Ultrasonic characterization of texture: basic science and technology transfer, in: “Intelligent processing of materials”, H. N. G. Wadley, ed. (TMS, in press).Google Scholar
  21. 21.
    A. V. Clark, Jr., A. Govada, R. B. Thompson, J. F. Smith, G. V. Blessing, P. P. Delsanto, and R. B. Mignona, The use of ultrasonics for texture monitoring in aluminum alloys, in “Revies of Progress in Quantitative Nondestructive Evaluation” Vol. 6, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, NY (1987), p. 1515.CrossRefGoogle Scholar
  22. 22.
    W. Y. Lu, J. G. Morris, and Q. Gu, Ultrasonic measurement of the earing behavior of aluminum plate, in “Review of Progress in Quantitative Nondestructive Evaluation”, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, Vol. 10, NY, in press.Google Scholar
  23. 23.
    S. J. Wormley, R. B. Thompson and Y. Li, Analysis of a semi-automatic system for the ultrasonic measurement of texture, in: “Review of progress in quantitative nondestructive evaluation”, Vol. 7B, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, NY (1987), p. 1639.Google Scholar
  24. 24.
    E. Schneider, R. Herzer, D. Bruche and A. Wilbrand, Towards the automated ultrasonic characterization of deep drawability of steel sheets, these proceedings.Google Scholar
  25. 25.
    R. Murayama, K. Fujisana, H. Fukuoka, M. Hirao and S. Yonehara, Nondestructive evaluation of materials properties with EMAT in “1989 Ultrasonics Symposium Proceedings”, IEEE, NY (1989), p. 1159.CrossRefGoogle Scholar
  26. 26.
    A. V. Clark, R. B. Thompson, G. V. Blessing and D. Matlock, Ultrasonic measurement of formability in thin ferritic steel sheets, in “Review of Progress in Quantitative Nondestructive Evaluation,” Vol. 8, D. O. Thompson and D. E. Chimenti, Eds. (Plenum Press, NY, 1989) p. 1031.Google Scholar
  27. 27.
    S. J. Wormley, K. Forouraghi, Y. Li, R. B. Thompson, and E. P. Papadakis, Application of a fourier transform-phase-slope technique to the design of an instrument for the ultrasonic measurement of texture and stress, in: “Review of progress in quantitative nondestructive evaluation,” Vol. 9A, D. O. Thompson and D. E. Chimenti, eds., Plenum, New York, (1990), p. 951.Google Scholar
  28. 28.
    Y. Li and R. B. Thompson, unpublished results.Google Scholar
  29. 29.
    E. P. Papadakis, Future growth of nondestructive evaluation, Trans. IEEE, SU-23: 284 (1976).Google Scholar
  30. 30.
    E. P. Papadakis, Future growth of nondestructive evaluation: an update, Mater. Eval., 41: 1130 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Emmanuel P. Papadakis
    • 1
  • R. Bruce Thompson
    • 1
  • Delwyn D. Bluhm
    • 2
  • George A. Alers
    • 3
  • Kaveh Forouraghi
    • 1
  • Harold D. Skank
    • 2
  • Samuel J. Wormley
    • 1
  1. 1.Center for Nondestructive EvaluationIowa State UniversityAmesUSA
  2. 2.Ames LaboratoryUSDOE, Iowa State UniversityAmesUSA
  3. 3.Magnasonics, Inc.AlbuquerqueUSA

Personalised recommendations