Ultrasonic Characterization of Composite Microstructure

  • Ronald A. Kline
  • Robert Adams


In this work, nondestructive methods for the quantitative evaluation of composite microstructure are described. Parameters of interest in this regard might include fiber volume fraction, porosity, degree of cure (thermoset resins) and crystallinity (thermoplastic resins). These methods rely upon the high degree of accuracy which can be obtained with ultrasonic measurements of acoustic velocities; hence the mechanical properties of the material, and well established composite micromechanics relationships between elastic properties and composite microstructure. This results in sets of nonlinear equations which can be solved for the unknown microstructural parameters.


Representative Volume Element Longitudinal Velocity Fiber Volume Fraction Ultrasonic Testing Ultrasonic Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Dietz, E. A. Hauser, F. J. McGarry and G. A. Sofer, Ultrasonic Waves as a Measure of Cure, Ind. Chem. Eng., 48:75 (1956).CrossRefGoogle Scholar
  2. 2.
    J. H. Speake, R. G. C. Arridge and G. J. Curtis, Measurement of the Cure of Resins by an Ultrasonic Technique, J. Phys. D. Appl. Phys., 7:412, (1974).CrossRefGoogle Scholar
  3. 3.
    A. M. Lindrose, Ultrasonic Waves and Moduli Changes in a Curing Epoxy Resin, Exp. Mech., 18:227 (1978).CrossRefGoogle Scholar
  4. 4.
    S. I. Rokhlin, An Ultrasonic Bridge for the Study of the Properties of Thin Interface Films, J. Acoust. Soc. Am., 73:1619 (1983).CrossRefGoogle Scholar
  5. 5.
    C. P. Hsiao and R. A. Kline, The Measurement of Viscoelastic Moduli Using an Ultrasonic Spectroscopy Technique, Proceedings IEEE Ult. Symp., 443 (1984).Google Scholar
  6. 6.
    R. M. Jones, “Mechanics of Composite Materials,” Hemisphere, New York (1975).Google Scholar
  7. 7.
    Z. Hashin and B. W. Rosen, The Elastic Moduli of Fiber Reinforced Materials, J. Appl. Mech., 29:22 (1962).Google Scholar
  8. 8.
    Z. Hashin, Analysis of the Properties of Fiber Composites with Anisotropic Constituents, J. Appl. Mech., 46:543 (1979).CrossRefGoogle Scholar
  9. 9.
    Z. Hashin, The Elastic Moduli of Heterogeneous Materials, J. Appl. Mech., 29:143 (1962).CrossRefGoogle Scholar
  10. 10.
    W. N. Reynolds and S. J. Wilkinson, The Analysis of Fiber Reinforced Porous Composite Materials by the Measurement of Ultrasonic Wave Velocities, Ultrasonics, 16:159 (1978).CrossRefGoogle Scholar
  11. 11.
    R. Kline, Ultrasonic Measurement of Fiber Volume Fraction and Porosity, Proceedings ENTEC (1987).Google Scholar
  12. 12.
    R. Kline, Quantitative NDE of Advanced Composites, J. Eng. Mat. Tech., 112:218 (1990).CrossRefGoogle Scholar
  13. 13.
    J. J. Gruber, J. M. Smith and R. H. Brockelman, Ultrasonic Velocity C-Scans for Ceramic and Composite Material Characterization, Mat. Eval., 46:90 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Ronald A. Kline
    • 1
  • Robert Adams
    • 1
  1. 1.School of AMEUniversity of OklahomaNormanUSA

Personalised recommendations