Advertisement

Nondestructive Evaluation of Solids by Thermoelastic Testing With Laser Beams

  • B. Cretin
  • D. Hauden
  • A. Mahmoud
  • J.-L. Lesne

Abstract

The nondestructive evaluation of metallic materials is based on the properties of the tested sample which can be obtained by various techniques, eg: X-ray absorption1, elastic wave reflection2, thermal property modifications3. Thermoelastic testing detects the alteration of the thermal and elastic constants inside metallic samples. Among different methods to generate and detect dynamic strain in solids4–7, we have selected a system based on an intensity modulated laser beam to excite thermal waves and a high resolution heterodyne laser probe to detect the thermoelastic displacements.

Keywords

Nondestructive Evaluation Thermal Wave Residual Static Stress Thermoelastic Displacement Nondestructive Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. O. Ruud, G. H. Penningtom, E. B. Brauss and S. D. Weedman, “Simultaneous residual stress and retained austenite measurement by Xray diffraction”, Proc. in “Nondestructive characterization of materials”, Springer-Verlag, Saarbrücken, FRG, October 3-6, pp. 406-412 (1988).Google Scholar
  2. 2.
    C.F. Quate, A. Atalar, H. K. Wickramasinghe, “Acoustic microscopy with mechanical scanning. A review”, Proc. of the IEEE, 67(8), 1092 (1979).CrossRefGoogle Scholar
  3. 3.
    A. Rosencwaig, “Thermal wave microscopy with photoacoustics”, J. Appl. Phys. 51(4), 2210 (1980).CrossRefGoogle Scholar
  4. 4.
    W. Jackson, N. M. Amer, “Piezoelectric photoacoustic detection: theory and experiment”, J. Appl. Phys., 51(6), 3343 (1980).CrossRefGoogle Scholar
  5. 5.
    Y. Martin, H. K. Wickramasinghe, E. A. Ash, “Thermo and photodisplacement microscopy”, Proc. IEEE Ultrasonics Symp., p. 563 (1982).Google Scholar
  6. 6.
    G. C. Wetsel, Jr., “Photothermal generation of thermoelastic waves in composite media”, IEEE Trans, on Ultrasonics, Ferroelectrics and Frequency Control, UFFC-33(5), 450 (1986).CrossRefGoogle Scholar
  7. 7.
    A. Rosencwaig, G. Busse, “High-resolution photoacoustic thermal-wave microscopy”, Appl. Phys. Lett. 36(9), 725 (1980).CrossRefGoogle Scholar
  8. 8.
    B. Cretin, D. Hauden, “Thermoacoustic microscopy using optical excitation and detection”, Proc. SPIE, vol. 809, Scanning imaging technology, p. 64 (1987).Google Scholar
  9. 9.
    D. Royer, E. Dieulesaint, Y. Martin, “Improved version of a polarized beam heterodyne interferometer”, Proc. IEEE Ultrasonics Symposium (1985).Google Scholar
  10. 10.
    A. Mandelis, LM. L Borm, J. Tiessinga, “Frequency modulated (FM) time delay photoacoustic and photothermal wave spectroscopies. Technique instrumentation and detection”, Rev. Sci. Instrum. 57 (4) (1986). Part. I pp. 617-621 Part II pp. 622-629 Part III pp. 630-635.Google Scholar
  11. 11.
    M. Kasai, T. Sawada, “Non-destructive evaluation of the distribution of stress by means of the photoacoustic microscope”., Springer Series in Optical Sciences, vol. 62, Photoacoustic and Photothermal Phenomena II, Editors: J. C. Murphy, J. W. Machlachlan-Spicer, L. Aamodt, B. S. H. Royce, Springer-Verlag, pp. 33-36 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • B. Cretin
    • 1
    • 2
  • D. Hauden
    • 1
    • 2
  • A. Mahmoud
    • 1
    • 2
  • J.-L. Lesne
    • 3
  1. 1.Laboratoire de Physique et Métrologie des OscillateursCNRSFrance
  2. 2.l’Université de Franche-Comté-BesançonBesançonFrance
  3. 3.Electricité de FranceDirection des Etudes et RecherchesSaint-DenisFrance

Personalised recommendations