Advertisement

Computerized Tomography of High Explosives

  • H. E. Martz
  • D. J. Schneberk
  • G. P. Roberson
  • S. G. Azevedo
  • S. K. Lynch

Abstract

Computerized tomography (CT) techniques are being investigated to improve the current manufacturing process flow of high explosives (HE). In order to revise the manufacturing process flow, it must be demonstrated that CT can provide information comparable to the techniques currently used: 1) shadow graphs, to determine gross outer dimensions; 2) radiography, to detect cracks, voids, and foreign inclusions; 3) dye penetrant, to identify surface cracks; 4) a wet/dry bulk-density measurement technique; and 5) destructive core sampling for exhaustive density measurements.

Keywords

Weight Fraction High Explosive Density Image Lawrence Livermore National Laboratory Linear Attenuation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Martz, G. P. Roberson, M. F. Skeate, D. J. Schneberk, S. G. Azevedo, and S. K. Lynch, High Explosives (PBX9502) Characterization Using Computerized Tomography, UCRL-ID-lQ3318, Lawrence Livermore National Laboratory, Livermore (1990).Google Scholar
  2. 2.
    G. A. Sheppard, Development of a High-Resolution Inert High-Explosives Tomography Phantom, submitted to Appl. Radiat. Isot. (1988).Google Scholar
  3. 3.
    E. Östman, Determination of Density Resolution and Smallest Detectable Region in Explosives by X-Ray Tomography Scanning, in: “The American Society for Nondestructive Testing Topical Conference on Industrial Computerized Tomography Topical Proceedings,” Seattle (1989).Google Scholar
  4. 4.
    K. Kouris, N. M. Spyrou, and D. F. Jackson, Materials Analysis Using Photon Attenuation Coefficients, in: “Research Techniques in Nondestructive Testing Vol. VI,” R. S. Sharpe, ed., Academic Press, New York (1982).Google Scholar
  5. 5.
    B. M. Dobratz and P. C. Crawford, LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants, UCRL-52997, Lawrence Livermore National Laboratory, Livermore (1985).Google Scholar
  6. 6.
    H. E. Martz, S. G. Azevedo, J. M. Brase, K. E. Waltjen and D. J. Schneberk, Computed Tomography Systems and Their Industrial Applications, accepted by Appl. Radiat. Isot. (1990).Google Scholar
  7. 7.
    H. E. Martz, M. F. Skeate, D. J. Schneberk, and S. G. Azevedo, Design, Performance, and Application of a CCD Camera-Based CT System, in: “The American Society for Nondestructive Testing Topical Conference on Industrial Computerized Tomography Topical Proceedings,” Seattle (1989).Google Scholar
  8. 8.
    D. G. Schneberk, H. E. Martz, S. G. Azevedo, and M. F. Skeate, Multiple-Energy Techniques in Industrial Computerized Tomography, submitted to Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York (1990).Google Scholar
  9. 9.
    D. E. Cullen, M. H. Chen, J. H. Hubbell, S. T. Perkins, E. F. Plechaty, J. A. Rathkopf, and J. H. Scofield, Tables and Graphs of Photon-Interaction Cross Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated-Photon-Data Library (EPDL), UCRL-5040Q, Vol. 6, Rev. 4, Lawrence Livermore National Laboratory, Livermore (1989).Google Scholar
  10. 10.
    P. Engler and W. D. Friedman, Review of Dual-Energy Computed Tomography Techniques, Mats. Eval. 48:623 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. E. Martz
    • 1
  • D. J. Schneberk
    • 1
  • G. P. Roberson
    • 1
  • S. G. Azevedo
    • 1
  • S. K. Lynch
    • 1
  1. 1.Lawrence Livermore National LaboratoryNondestructive Evaluation Section, L-333LivermoreUSA

Personalised recommendations