DSC Studies and Stability of Frozen Foods

  • D. Simatos
  • G. Blond
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)


This paper discusses the role played by the “WLF decrease in viscosity” above the temperature of the glass transition (Tg) in the temperature dependence of the stability of frozen foods. In the first part, the complex features observed before the melting endotherm on DSC/DTA thermograms of sugar-water solutions are examined; they are suggested to be representative of a glass transition associated with enthalpy relaxation. In the second part, the values of Tg for some complex foods are discussed. It is shown that ice melting adds an important contribution to the WLF effect on the decrease of the viscosity of the freeze-concentrated phase. The temperature dependence of the deterioration processes observed in frozen food products is generally smaller than that expected from this viscosity decrease. Several hypotheses are presented to account for the discrepancy.


Glass Transition Differential Thermal Analysis Glass Phase Unfrozen Water Freeze Food 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Levine and L. Slade, Principles of “cryostabilization” technology from structure/property relationships of carbohydrate/water systems — a review, Cryo-Lett. 9:21 (1988).Google Scholar
  2. 2.
    H. Levine and L. Slade, A food polymer science approach to the practice of cryostabilization technology, Comments Agric. Food Chem. 1:315 (1989).Google Scholar
  3. 3.
    L.R. Rey, Etude physiologique et physico-chimique de l’action des basses températures sur les tissus animaux vivants, Thèse, Université de Paris (1958).Google Scholar
  4. 4.
    B. Luyet and D. Rasmussen, Study by differential thermal analysis of the temperatures of instability in rapidly cooled solutions of polyvinyl pyrrolidone, Biodynamica 10:137 (1967).Google Scholar
  5. 5.
    B. Luyet and D. Rasmussen, Study by differential thermal analysis of the temperatures of instability in rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose, Biodynamica 10:167 (1968).Google Scholar
  6. 6.
    D. Rasmussen and B. Luyet, Complementary study of some non-equilibrium phase tansitions in frozen solutions of glycerol, ethylene glycol, glucose and sucrose, Biodynamica 10:319 (1969).Google Scholar
  7. 7.
    D. Simatos, M. Faure, E. Bonjour, and M. Couach, The physical state of water at low temperatures in plasma with different water contents as studied by differential thermal analysis and differential scanning calorimetry, Cryobiol. 12:202 (1975).CrossRefGoogle Scholar
  8. 8.
    D. Simatos, M. Faure, E. Bonjour, and M. Couach, Differential thermal analysis and differential scanning calorimetry in the study of water in foods, in: “Water Relations of Foods,” R.B. Duckworth, ed., Academic Press, London (1975).Google Scholar
  9. 9.
    M. Couach, T. Moreira, M. Le Meste, E. Bonjour, and D. Simatos, Etudes sur l’état physique de solutions de sucres à basses température, en relation avec l’affaissement de structure en lyophilisation, in: “Congélation, Conservation à l’Etat Congelé et Lyophilisation,” (Institut International du Froid) IIF-IIR, Paris (1977).Google Scholar
  10. 10.
    M. Le Meste and D. Simatos, Use of electron spin resonance for the study of the “ante-melting” phenomenon observed in sugar solutions by differential scanning calorimetry, Cryo-Lett. 1:402 (1980).Google Scholar
  11. 11.
    B. Wunderlich, The basis of thermal analysis, in “Thermal Characterization of Polymeric Materials,” E.A. Turi, ed., Academic Press, New York (1981).Google Scholar
  12. 12.
    M. Ruddy and J.M. Hutchinson, Multiple peaks in differential scanning calorimetry of polymer glasses, Polymer Comm. 29:132 (1988).Google Scholar
  13. 13.
    S. Matsuoka, G. Williams, G.E. Johnson, E.W. Anderson, and T. Furukawa, Phenomenological relationship between dielectric relaxation and thermodynamic recovery processes near the glass transition, Macromolecules 18:267 (1985).CrossRefGoogle Scholar
  14. 14.
    C.A. Angell and J.C. Tucker, Heat capacity changes in glass-forming aqueous solutions and the glass transition in vitreous water, J. Phys. Chem. 84:267 (1980).Google Scholar
  15. 15.
    A. Hallbrucker, E. Mayer, and G.P. Johari, The heat capacity and glass transition of hyperquenched glassy water, Phil. Magazine B 60:179 (1989).CrossRefGoogle Scholar
  16. 16.
    P.D. Orford, R. Parker, S.G. Ring and A.C. Smith, Effect of water as a diluent on the glass transition behavior of malto-oligosaccharides, amylose and amylopectin, Int. J. Biol. Macromol. 11:91 (1989).CrossRefGoogle Scholar
  17. 17.
    G. Blond, Water-galactose system: supplemented phase diagram and unfrozen water. Cryo-Lett. 10:299 (1989).Google Scholar
  18. 18.
    G. Blond, unpublished data.Google Scholar
  19. 19.
    M. Jul, “The Quality of Frozen Food,” Academic Press, London (1984).Google Scholar
  20. 20.
    J.D. Ferry, “Viscoelastic Properties of Polymers,” J. Wiley & Sons, New York (1980).Google Scholar
  21. 21.
    Dietrich (1957), cited by O.K. Fennema, W.D. Powrie, and E.H. Marth, “Low Temperature Preservation of Foods and Living Matter,” Marcel Dekker, New York (1973).Google Scholar
  22. 22.
    M. Faure, Influence de la température de lyophilisation sur le comportement rhéologique du jaune d’oeuf, Thèse, Université de Dijon (1976).Google Scholar
  23. 23.
    R.M. Love (1962), cited by O.K. Fennema, W.D. Powrie, and E.H. Marth, “Low Temperature Preservation of Foods and Living Matter,” Marcel Dekker, New York (1973).Google Scholar
  24. 24.
    E.L. Leblanc, R.J. Leblanc, and I.E. Blum, Prediction of quality in frozen cod fillets, J. Food Sci. 53:328 (1988).CrossRefGoogle Scholar
  25. 25.
    M.M. Martino and N.E. Zaritzky, Ice crystal size modifications during frozen beef storage, J. Food Sci. 53:1631 (1988).CrossRefGoogle Scholar
  26. 26.
    L. Riedel, Kalorimetrische Untersuchungen über das Gefrieren von Seefischen. Kältetechnik 8:374 (1956).Google Scholar
  27. 27.
    M.L. Williams, R.F. Landel, and J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc. 77:3701 (1955).CrossRefGoogle Scholar
  28. 28.
    T. Soesanto and M.C. Williams, Volumetric interpretation of viscosity for concentrated and dilute sugar solutions, J. Phys. Chem. 85:3338 (1981).CrossRefGoogle Scholar
  29. 29.
    R.J. Bellows and C.J. King, Product collapse during freeze-drying of liquid foods, AIChE Symp. Series 69:33 (1973).Google Scholar
  30. 30.
    A.P. MacKenzie, Non-equilibrium freezing behaviour of aqueous systems, Phil. Trans. Roy. Soc. Lond. B 278:167 (1977).CrossRefGoogle Scholar
  31. 31.
    T. Moreira, Contribution à l’étude des relations entre l’aptitude à la lyophilisation des jus de fruits et leurs caractéristiques chimiques, Thèse, Université de Dijon (1976).Google Scholar
  32. 32.
    H.P. Horz, Untersuchungen zum Gefrierverhalten flüssiger Lebensmittel in Hinblick auf das Gefrierlagern, Gefriertrocknen und Gefriekonzentrieren, Dr. Ing. Dissertation, Universität Karlsruhe (1987).Google Scholar
  33. 33.
    L.H. Sperling, “Physical Polymer Science,” Wiley-Interscience, New York (1986).Google Scholar
  34. 34.
    R.E. Pincok and T.E. Koivsky, Reactions in frozen solutions. VI The reaction of ethylene chlorhydrin with hydroxyl ion in ice, J. Am. Chem. Soc. 88:4455 (1966).CrossRefGoogle Scholar
  35. 35.
    F. Franks, “Biophysics and Biochemistry at Low Temperatures,” Cambridge Univ. Press, Cambridge (1985).Google Scholar
  36. 36.
    O. Fennema, Reaction kinetics in partially frozen aqueous systems, in: “Water Relations of Foods,” R.B. Duckworth, ed., Academic Press, London (1975).Google Scholar
  37. 37.
    M. Karel, Effects of water on diffusion in food systems, in: This book.Google Scholar
  38. 38.
    M. Le Meste, A. Voilley, and B. Colas, Influence of water on the mobility of small molecules dispersed in a polymeric system, in: This book.Google Scholar
  39. 39.
    L. Riedel, Zum Problem des gebundenen Wassers in Fleisch. Kältetechnik 13:122 (1961).Google Scholar
  40. 40.
    P. Reutner, B. Luft, and W. Borchard, Compound formation and glassy solidification in the system gelatin-water, Colloid and Polymer Sci. 263:519 (1985).CrossRefGoogle Scholar
  41. 41.
    A.P. Mackenzie, Discussion at the Symposium: Water Relationships in Foods, Am. Chem. Soc., Dallas, TX (1989).Google Scholar
  42. 42.
    H. Levine and L. Slade, Response to the letter by Simatos, Blond, and Le Meste on the relation between glass transition and stability of a frozen product, Cryo-Lett. 10:347 (1989).Google Scholar
  43. 43.
    A.P. Mackenzie, A current understanding of the freeze-drying of representative aqueous solutions, in: “Fundamentals and Applications of Freeze-Drying to Biological Materials, Drugs and Foodstuffs,” International Institute of Refrigeration, Paris (1985).Google Scholar
  44. 44.
    F. Franks, Aqueous systems at subzero temperatures, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. Simatos
    • 1
  • G. Blond
    • 1
  1. 1.ENS.BANAUniversité de BourgogneDijonFrance

Personalised recommendations