Advertisement

Influence of Water on the Mobility of Small Molecules Dispersed in a Polymeric System

  • M. Le Meste
  • A. Voilley
  • B. Colas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)

Summary

The rotational mobility of paramagnetic solutes dispersed in partially hydrated macromolecules (proteins, polysaccharides, synthetic polymers) was measured using Electron Spin Resonance. A critical minimum amount of water was observed to be necessary for these molecules to reach a level of mobility of the same order as in dilute solutions. This amount of water depended on the size of the diffusing solute and on the microporosity of the macromolecule. Above this critical moisture range, a progressive increase of the proportion of mobile solute occurred over a hydration range determined by the size of the diffusing solute. At the same time, the rotational diffusivity of the mobile solute increased linearly with water content. The mobilization pattern of spin-labelled side chains of caseinates was observed to be similar to that of the solute. Results are discussed with reference to free volume theory.

Keywords

Electron Spin Resonance Glass Transition Temperature Free Volume Rotational Correlation Time Nitroxide Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Levine and L. Slade, A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs), Carbohydr. Polym. 6:213 (1986).CrossRefGoogle Scholar
  2. 2.
    D. Simatos, M. Le Meste, D. Petroff, and B. Halphen, Use of electron spin resonance for the study of solute mobility in relation to moisture content in model food systems, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  3. 3.
    M. Le Meste and R.B. Duckworth, The influence of water content on the mobility of solute molecules and of protein side chains in caseinate preparation, Intern. J. Food Sci. Technol. 23:457 (1988).CrossRefGoogle Scholar
  4. 4.
    A.I. Kaïväräinen, “Solvent Dependent Flexibility of Proteins and Principles of their Function,” Reidel, Dordrecht (1985).CrossRefGoogle Scholar
  5. 5.
    R.B. Duckworth and C.E. Kelly, Studies of solution processes in hydrated starch and agar at low moisture levels using wide-line nuclear magnetic resonance, J. Food Technol. 8:105 (1973).CrossRefGoogle Scholar
  6. 6.
    R.B. Duckworth, Solute mobility in relation to water content and water activity, in: “Water Activity: Influence on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  7. 7.
    P. Walstra, Nonsolvent water and steric exclusion of solutes. Kolloid Polymer 251:603 (1973).CrossRefGoogle Scholar
  8. 8.
    A.L. Kovarskii, J. Placek, and F. Szöcs, Study of rotational mobility in stable nitroxide radicals in solid polymers, Polymer 19:1137 (1978).CrossRefGoogle Scholar
  9. 9.
    P. Tormäla, On the mechanism of motions of nitroxyl radicals in polymers. Polymer 15:124 (1974).CrossRefGoogle Scholar
  10. 10.
    M. Le Meste, L. Viguier, D. Lorient, and D. Simatos, Rotational diffusivity of solutes in concentrated caseinates. Influence of glycosylation, J. Food Sci. 55:724 (1990).CrossRefGoogle Scholar
  11. 11.
    M. Le Meste, B. Colas, G. Blond, and D. Simatos, Influence of glycosylation on the hydration properties of caseinates, J. Dairy Res. 56:479 (1989).CrossRefGoogle Scholar
  12. 12.
    M. Le Meste and A. Voilley, Influence of hydration on rotational diffusivity of solutes in model systems, J. Phys. Chem. 92:1612 (1988).CrossRefGoogle Scholar
  13. 13.
    A.L. Kovarskii, A.M. Wasserman, and A.L. Buchachenko, The study of rotational and translational diffusion constant for stable nitroxide radicals in liquids and polymers, J. Magn. Res. 7:225 (1972).Google Scholar
  14. 14.
    B. Kowert and D. Kivelson, ESR linewidths in solution VIII. Two component diamagnetic solvents, J. Chem. Phys. 64:5206 (1976).CrossRefGoogle Scholar
  15. 15.
    J.L. Dote, D. Kivelson, and R.N. Schwartz, A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids, J. Phys. Chem. 85:2169 (1981).CrossRefGoogle Scholar
  16. 16.
    M. Le Meste, G. Cornily, and D. Simatos, Temperature-induced phase change in a fat. A study by Electron Spin Resonance, Lipids 20:5, 296 (1985).CrossRefGoogle Scholar
  17. 17.
    M.M. Cohen and D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys. 31:1164 (1959).CrossRefGoogle Scholar
  18. 18.
    J. Perez, Frottement intérieur et module dynamique associés à la transition vitreuse des polyméres amorphes. Rev. Phys. Appl. 2:93 (1986).CrossRefGoogle Scholar
  19. 19.
    J.S. Vrentas and J.L. Duda, Molecular diffusion in polymer solutions, AICHE J. 25:1 (1979).CrossRefGoogle Scholar
  20. 20.
    J.S. Vrentas, J.L. Duda, and M.K. Lau, Solvent diffusion in molten polyethylene, J. Appl. Poly. Sci. 27:3987 (1982).CrossRefGoogle Scholar
  21. 21.
    J. Perez, Defect diffusion model for volume and enthalpy recovery in amorphous polymers. Polymer 29:483 (1988).CrossRefGoogle Scholar
  22. 22.
    J. Perez, J.Y. Cavaille, S. Etienne, and C. Jourdan, Physical interpretation of the rheological behaviour of amorphous polymers through the glass transition, Rev. Phys. Appl. 125 (1988).Google Scholar
  23. 23.
    W. Miller, Spin labeled synthetic polymers. in: “Spin Labeling II. Theory and Applications,” L.J. Berliner, ed., Academic Press, New York (1979).Google Scholar
  24. 24.
    T. Hori, I. Fujita, and T. Skimizu, Diffusion of disperse dyes into Nylon 6 above and below the glass transition temperature, J. Soc. Dyers Colour. 102:181 (1986).CrossRefGoogle Scholar
  25. 25.
    J. Coutandin, D. Ehlich, and M. Sillescu, Diffusion of dye molecules in polymers above and below the glass transition temperature studied by the Holographic Grating Technique, Macromolecules 18:587 (1985).CrossRefGoogle Scholar
  26. 26.
    J.S. Vrentas, J.L. Duda, and H.C. Ling, Influence of the glass transition on solvent self-diffusion in amorphous polymers, J. Polym. Sci. 26:1059 (1988).Google Scholar
  27. 27.
    J.A. Lee, T.S. Frick, W.J. Huang, T.P. Lodge, and M. Tirell, Probe diffusion in polymer solutions near Tg by forced Rayleigh scattering, Polvm. Prepr. 28:369 (1987).Google Scholar
  28. 28.
    P. Tormäla, and J. Tulikowa, Effect of end-groups on the motion of free nitroxyl radicals in poly(ethyleneglycol), Polymer 15:248 (1974).CrossRefGoogle Scholar
  29. 29.
    D. Simatos and M. Karel, Characterization of the condition of water in foods: Physico-chemical aspects, in: “Food Preservation by Moisture Control,” CC. Seow, ed., Elsevier Appl. Sci., Belfast (1988).Google Scholar
  30. 30.
    M.L. Williams, R.F. Landel, and J.D. Ferry, Temperature dependence of relaxation mechanisms in amorphous polymers and other glassforming liquids, J. Am. Chem. Soc. 77:3701 (1955).CrossRefGoogle Scholar
  31. 31.
    J. Jäckie, Models of glass transition. Rep. Prog. Phvs. 49:171 (1986).CrossRefGoogle Scholar
  32. 32.
    A.T. Bullock, G.G. Cameron, and P.M. Smith, Electron spin resonance studies of spin labeled polymers VIII. Relaxation processes in low density polyethylene, Eur. Polym. J. 11:617 (1975).CrossRefGoogle Scholar
  33. 33.
    A. Voilley and M. Le Meste, Aroma diffusion: the influence of water activity and of molecular weight of other solutes, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Nato ASI Series, M. Nijhoff, Dordrecht (1985).Google Scholar
  34. 34.
    D. Ringe, J. Kuriyan, A. Petsko, M. Karplus, M. Frauenfelder, R. Tilton, and I.O. Kuntz, The temperature dependence of protein structure and mobility, Trans. Am. Crystal Assoc. 20:109 (1985).Google Scholar
  35. 35.
    M. Frauenfelder, Proteins and glasses, in: “Structure and Dynamics of Nucleic Acids, Proteins, and Membranes,” E. Clementi and S. Chin, eds., Plenum, New York (1986).Google Scholar
  36. 36.
    M. Frauenfelder, F. Porak, and R.D. Young, Conformational substates in proteins, Ann. Rev. Biophys. Chem. 17:541 (1988).CrossRefGoogle Scholar
  37. 37.
    G. G. Cameron, I.S. Miles, and T. Bullock, Distribution in correlation times for rotational diffusion of spin probes in polymers, Brit. J. Polymer 19:129 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. Le Meste
    • 1
  • A. Voilley
    • 1
  • B. Colas
    • 1
  1. 1.Département de biologie physico-chimiqueEcole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l’alimentationDijonFrance

Personalised recommendations