Ordered Water in Hydrated Solid-State Polysaccharide Systems

  • R. P. Millane
  • Struther Arnott
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)


Water molecules within a monolayer or so of macromolecular surfaces are often located in well-defined positions and have restricted mobility. These ordered water molecules play a role in stabilizing polysaccharide ordered structures and intermolecular interactions that are the basis of the rheological properties utilized in food systems. X-ray fiber diffraction can be used to determine the three-dimensional structures of polysaccharides in solid, but well-hydrated, polycrystalline fibers. In favorable cases, difference Fourier synthesis can be used to locate ordered water molecules in these systems, allowing one to visualize their functionally important interactions. These studies provide relevant evidence regarding water interactions in more hydrated systems and in solution. The functionality of ordered water in some polysaccharides used in food systems, as well as in some connective tissue glycosaminoglycans where the ordered water has been defined in considerable detail, as determined by fiber diffraction, is described in this chapter. These structures allow one to derive some general features of the role of ordered water in such systems.


Hyaluronic Acid Junction Zone Coordination Shell Helix Pitch Fiber Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Slade and H. Levine, A food polymer science approach to selected aspects of starch gelatinization and retrogradation, in: “Frontiers in Carbohydrate Research-1: Food Applications,” R.P. Millane, J.N. BeMiller, and R. Chandrasekaran, eds., Elsevier, London, (1989).Google Scholar
  2. 2.
    M. Glicksman (ed.), “Food Hydrocolloids,” CRC Press, Boca Raton (1983).Google Scholar
  3. 3.
    E.R. Morris, Molecular origin of hydrocolloid functionality, in: “Gums and Stabilizers for the Food Industry-3,” G.O. Phillips, D.J. Wedlock, and P.A. Williams, eds., Elsevier, New York (1986).Google Scholar
  4. 4.
    J.L. Finney, The organization and function of water in protein crystals, in: “Water: A Comprehensive Treatise,” Vol. 6, F. Franks, ed., Plenum, London (1979).Google Scholar
  5. 5.
    T.L. Blundell and L.N. Johnson, “Protein Crystallography,” Academic Press, New York (1978).Google Scholar
  6. 6.
    S.H. Koenig, The dynamics of water-protein interactions: results from measurements of nuclear magnetic resonance relaxation dispersion, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. Vol. 127, Am. Chem. Soc, Washington, DC (1980).Google Scholar
  7. 7.
    I.P. Kuntz, T.S. Brassfield, G.D. Law, and G.V. Purcell, Hydration of macromolecules, Science 163:1329 (1969).CrossRefGoogle Scholar
  8. 8.
    C.C.F. Blake, W.C.A. Pulford, and P.J. Artymiuk, X-ray studies of water in crystals of lysozyme, J. Mol. Biol. 167:693 (1983).CrossRefGoogle Scholar
  9. 9.
    K.D. Watenpaugh, L.C. Sieker, and L.H. Jensen, The structure of rubredoxin at 1.2 Å resolution, J. Mol. Biol. 131:509 (1979).CrossRefGoogle Scholar
  10. 10.
    M.M. Teeter, Water structure of a hydrophobic protein at atomic resolution: pentagonal rings of water molecules in crystals of crambin, Proc. Natl. Acad. Sci. USA 81:6014 (1984).CrossRefGoogle Scholar
  11. 11.
    H.J.C. Berendsen, Specific interactions of water with biopolymers, in: “Water: A Comprehensive Treatise,” Vol. 5, F; Franks, ed., Plenum, London (1975).Google Scholar
  12. 12.
    T. Bluhm, Y. Deslandes, R.H. Marchessault, and P.R. Sundararajan, New insights into the crystal structure hydration of polysaccharides, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. Vol. 127, Am. Chem. Soc, Washington, DC (1980).Google Scholar
  13. 13.
    I.A. Nieduszynski and R.H. Marchessault, Structure of β, D(l→4)-xylan hydrate, Biopolvmers 11:1335 (1972).CrossRefGoogle Scholar
  14. 14.
    E.D.T. Atkins and K.D. Parker, Helical structure of a β-D-1,3-xylan, J. Polvm. Sci. Part C 28:69 (1969).CrossRefGoogle Scholar
  15. 15.
    R.H. Marchessault, Y. Deslandes, K. Ogawa, and P.R. Sundararajan, X-ray diffraction data for beta-(1→3)-D-glucan, Can. J. Chem. 55:300 (1977).CrossRefGoogle Scholar
  16. 16.
    S. Arnott, Twenty years hard labor as a fiber diffractionist, in: “Fiber Diffraction Methods,” A.D. French and K.H. Gardner, eds., ACS Symp. Ser. Vol. 141, American Chemical Society, Washington, DC (1980).Google Scholar
  17. 17.
    R.P. Millane, Structure determination by fiber diffraction, in: “Computing in Crystallography 4: Techniques and New Technologies,” N.W. Isaacs and M.R. Taylor, eds., Oxford Univ. Press, Oxford (1988).Google Scholar
  18. 18.
    R.P. Millane and S. Arnott, Digital processing of X-ray fiber diffraction patterns from oriented fibers, J. Macromol. Sci. Phys. B24:193 (1985).CrossRefGoogle Scholar
  19. 19.
    R.P. Millane and S. Arnott, Background removal in X-ray fiber diffraction patterns, J. Appl. Crvstallogr. 18:419 (1985).CrossRefGoogle Scholar
  20. 20.
    S. Arnott and A.J. Wonacott, The refinement of the crystal and molecular structures of polymers using X-ray diffraction data and stereochemical constraints, Polymer 7:157 (1966).CrossRefGoogle Scholar
  21. 21.
    P.J.C. Smith and S. Arnott, LALS: A linked-atom least-squares reciprocal space refinement system incorporating stereochemical restraints to supplement sparse diffraction data, Acta Crvstallogr. A34:3 (1978).CrossRefGoogle Scholar
  22. 22.
    W.C. Hamilton, Significance tests on the crystallographic R factor, Acta Crvstallogr. 18:502 (1965).CrossRefGoogle Scholar
  23. 23.
    M. Glicksman, Red seaweed extracts (agar, carrageenans, furcellaran), in: “Food Hydrocolloids,” Vol. 2, M. Glicksman, ed., CRC Press, Boca Raton (1983).Google Scholar
  24. 24.
    H.H. Selby and W.H. Wynne, Agar, in: “Industrial Gums,” 2nd edn., R.L. Whistler and J.N. BeMiller, eds., Academic Press, New York (1973).Google Scholar
  25. 25.
    S. Arnott, A. Fulmer, W.E. Scott, I.C.M. Dea, R. Moorhouse, and D.A. Rees, The agarose double helix and its function in agarose gel structure, J. Mol. Biol. 90:269 (1974).CrossRefGoogle Scholar
  26. 26.
    S. Arnott, W.E. Scott, D.A. Rees, and G.C.A. McNab, Iota-carrageenan: molecular structure and packing of polysaccharide double helices in oriented fibers of divalent cation salts, J. Mol. Biol. 90:253 (1974).CrossRefGoogle Scholar
  27. 27.
    R.P. Millane, R. Chandrasekaran, S. Arnott, and I.C.M. Dea, The molecular structure of kappa-carrageenan and comparison with iotacarrageenan, Carbohvdr. Res. 182:1 (1988).CrossRefGoogle Scholar
  28. 28.
    S. Ablett, P.J. Lillford, S.M.A. Baghdadi, and W. Derbyshire, Nuclear magnetic resonance investigations of polysaccharide films, sols and gels. I. Agarose, J. Colloid Interface Sci. 67:355 (1978).CrossRefGoogle Scholar
  29. 29.
    G.O. Aspinal, Gums and mucilages, Adv. Carb. Chem. Biochem. 24:333 (1969).CrossRefGoogle Scholar
  30. 30.
    G.A. Towle and O. Christensen, Pectin, in: “Industrial Gums,” 2nd edn., R.L. Whistler and J.N. BeMiller, eds., Academic Press, New York (1973).Google Scholar
  31. 31.
    M.D. Walkinshaw and S. Arnott, Conformations and interactions of pectins. I. X-ray diffraction analyses of sodium pectate in neutral and acidified forms, J. Mol. Biol. 153:1055 (1981).CrossRefGoogle Scholar
  32. 32.
    M.D. Walkinshaw and S. Arnott, Conformations and interactions of pectins. II. Models for junction zones in pectinic acid and calcium pectate gels, J. Mol. Biol. 153:1075 (1981).CrossRefGoogle Scholar
  33. 33.
    S. Arnott and A.K. Mitra, X-ray diffraction analyses of glycosaminoglycans, in: “Molecular Biophysics of the Extracellular Matrix,” S. Arnott, D.A. Rees, and E.R. Morris, eds., Humana Press, Clifton, New Jersey (1984).Google Scholar
  34. 34.
    A.K. Mitra, S. Arnott, R.P. Millane, S. Raghunathan, and J.K. Sheehan, Comparison of glycosaminoglycan structures induced by different monovalent cations as determined by X-ray fiber diffraction, J. Macromol. Sci. Phvs. B24:21 (1985).CrossRefGoogle Scholar
  35. 35.
    J.M. Guss, D.W.L. Hukins, P.J.C. Smith, W.T. Winter, S. Arnott, R. Moorhouse, and D.A. Rees, Hyaluronic acid: molecular conformations and interactions in two sodium salts, J. Mol. Biol. 95:359 (1975).CrossRefGoogle Scholar
  36. 36.
    A.K. Mitra, S. Raghunathan, J.K. Sheehan, and S. Arnott, Hyaluronic acid: molecular conformations and interactions in the orthorhombic and tetragonal forms containing sinuous chains, J. Mol. Biol. 169:829 (1983).CrossRefGoogle Scholar
  37. 37.
    S. Arnott, A.K. Mitra, and S. Raghunathan, Hyaluronic acid double helix, J. Mol. Biol. 169:861 (1983).CrossRefGoogle Scholar
  38. 38.
    J.J. Cael, W.T. Winter, and S. Arnott, Calcium chondroitin 4-sulfate: molecular conformation and organization of polysaccharide chains in a proteoglycan, J. Mol. Biol. 125:21 (1978).CrossRefGoogle Scholar
  39. 39.
    R.P. Millane, A.K. Mitra, and S. Arnott, Chondroitin 4-sulfate: comparison of the structures of the potassium and sodium salts, J. Mo 1. Biol. 169:903 (1983).CrossRefGoogle Scholar
  40. 40.
    W.T. Winter, S. Arnott, D.H. Isaac, and E.D.T. Atkins, Chondroitin 4-sulfate: the structure of a sulfated glycosaminoglycan, J. Mo 1. Biol. 125:1 (1978).CrossRefGoogle Scholar
  41. 41.
    Y. Ikada, M. Suzuki, and H. Iwata, Water in mucopolysaccharides, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. Vol. 127, Am. Chem. Soc, Washington, DC (1980).Google Scholar
  42. 42.
    A. Suggett, Polysaccharides, in: “Water: A Comprehensive Treatise,” Vol. 4, F. Franks, ed., Plenum, London (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. P. Millane
    • 1
  • Struther Arnott
    • 1
  1. 1.The Whistler Center for Carbohydrate ResearchPurdue UniversityWest LafayetteUSA

Personalised recommendations