Skip to main content

Flexibility of Globular Proteins in Water as Revealed by Compressibility

  • Chapter
Book cover Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

In order to elucidate the flexibility-structure-function relationships of proteins, the adiabatic compressibility of about 30 globular proteins, including food proteins, was determined by means of sound velocity and density measurements in aqueous solutions. Most proteins studied showed positive compressibility, indicating the large internal flexibility of the molecules. The volume fluctuation was in the range of 30–200 ml/mol, which corresponded to about 0.3% of the total protein volume. From the statistical analyses of the compressibility data, it was found that the flexibility of proteins is closely related to structural factors such as hydrophobicity, helix element, and amino acid composition, and to functional properties such as digestibility and foaming capacity. These results indicate that the dynamics of protein structure should be taken into account in predicting precisely the functions and properties of a protein from its primary or tertiary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.M. Richards, Area, volumes, packing, and protein structure, Ann. Rev. Biophvs. Bioeng. 6:151 (1977).

    Article  CAS  Google Scholar 

  2. C. Chothia, Principles that determine the structure of proteins. Ann. Rev. Biochem. 53:537 (1984).

    Article  CAS  Google Scholar 

  3. H. Frauenfelder, G.A. Petsko, and D. Tserroglou, Temperature-dependent X-ray diffraction as a probe of protein structure dynamics, Nature (London) 280:558 (1979).

    Article  CAS  Google Scholar 

  4. P.J. Artymiuk, C.C.F. Blake, D.E.P. Grace, S.J. Oatly, D.C. Phillips, and M.J.E.S. Sterneberg, Crystallographic studies of the dynamic properties of lysozyme, Nature (London) 280:563 (1979).

    Article  CAS  Google Scholar 

  5. G. Careri, P. Fasella, and E. Gratton, Statistical time events in enzymes: a physical assessment, CRC Crit. Rev. Biochem. 3:141 (1975).

    Article  CAS  Google Scholar 

  6. G. Careri, E. Gratton, and P. Fasella, Enzyme dynamics: the statistical physics approach, Ann. Rev. Biophvs. Bioeng. 8:69 (1979).

    Article  CAS  Google Scholar 

  7. C.K. Woodward and D.B. Hilton, Hydrogen exchange kinetics and internal motions in proteins and nucleic acids, Ann. Rev. Biophvs. Bioeng. 8:99 (1979).

    Article  CAS  Google Scholar 

  8. M. Karplus and J.A. McCammon, The internal dynamics of globular proteins, CRC Crit. Rev. Biochem. 9:293 (1981).

    Article  CAS  Google Scholar 

  9. M. Karplus and J.A. McCammon, Dynamics of proteins: elements of functions, Ann. Rev. Biochem. 53:263 (1983).

    Article  Google Scholar 

  10. G.R. Welch, “The Fluctuating Enzyme,” John Wiley & Sons, New York (1986).

    Google Scholar 

  11. A. Cooper, Thermodynamic fluctuations in protein molecules. Proc. Natl. Acad. Sci. U.S.A. 73:2740 (1976).

    Article  CAS  Google Scholar 

  12. R.H. Pain, New light on old defects, Nature (London) 326:247 (1987).

    Article  CAS  Google Scholar 

  13. F.J. Millero, G.K. Ward, and P. Chetirkin, Partial specific volume, expansibilty, compressibility, and heat capacity of aqueous lysozyme solutions, J. Biol. Chem. 251:4001 (1976).

    CAS  Google Scholar 

  14. A.P. Sarvazyan and D.P. Kharakoz, Acoustical studies of the conformational states of proteins in aqueous solutions, Molecular Cellular Biophysics. Nauka Moscow: 93 (1977); A.P. Sarvazyan and P. Hemmes, Relaxational contributions to protein compressibility from ultrasonic data, Biopolvmers 18:3015 (1979).

    Article  CAS  Google Scholar 

  15. K. Gekko and H. Noguchi, Compressibility of globular proteins in water at 25°C, J. Phys. Chem. 83:2706 (1979).

    Article  CAS  Google Scholar 

  16. D. Eden, J.B. Matthew, J.J. Rosa, and F.M. Richards, Increase in apparent compressibility of cytochrome c upon oxidation. Proc. Natl. Acad. Sci. U.S.A. 79:815 (1982).

    Article  CAS  Google Scholar 

  17. B. Gavish, E. Gratton, and C.J. Hardy, Adiabatic compressibility of globular proteins, Proc. Natl. Acad. Sci. U.S.A. 80:750 (1983).

    Article  CAS  Google Scholar 

  18. W.P. Leung, K.C. Cho, Y.M. Lo, and C.L. Choy, Adiabatic compressibility of myoglobin: effect of axial ligand and denaturation, Biochim. Biophvs. Acta 870:148 (1986).

    Article  CAS  Google Scholar 

  19. K. Gekko and Y. Hasegawa, Compressibility-structure relationship of globular proteins, Biochemistry 25:6563 (1986).

    Article  CAS  Google Scholar 

  20. D.S. Sharp, N. Fujita, K. Kinzie, and J.B. Ifft, Compressibility studies of three proteins in CsCl solutions in the analytical ultracentrifuge, Biopolvmers 17:817 (1978).

    Article  CAS  Google Scholar 

  21. G.R. Andersson, A study of the pressure dependence of the partial specific volume of macromolecules in solution by compression measurements in the range 1–8000 atm, Ark. Kemi 20:513 (1963).

    Google Scholar 

  22. H. Shiio, Ultrasonic interferometer measurements of the amount of bound water: Saccharides. J. Am. Chem. Soc. 80:70 (1958).

    Article  CAS  Google Scholar 

  23. W. Kauzmann, Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1 (1959).

    Article  CAS  Google Scholar 

  24. H. Noguchi, Hydration of biopolymers. Prog. Polym. Sci. Jpn. 8:191 (1975).

    CAS  Google Scholar 

  25. F.J. Millero, A.L. Surdo, and C. Shin, The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25°C, J. Phys. Chem. 82:784 (1978).

    Article  CAS  Google Scholar 

  26. S. Cabani, G. Conti, E. Matteoli, and M.R. Tiné, Volumetric properties of amphionic molecules in water: Part 2 — thermal expansibility and compressibility related to the formation of zwitterionic structures, J. Chem. Soc, Faraday Trans. 1 77:2385 (1981).

    Article  CAS  Google Scholar 

  27. M. Iqbal and R.E. Verrall, Partial molar volumes and adiabatic compressibilities of glycyl peptides at 25°C, J. Phvs. Chem. 91:967 (1987).

    Article  CAS  Google Scholar 

  28. K. Gekko, Structure and compressibility of proteins. Seibutsu Butsuri 24:91 (1984).

    Article  CAS  Google Scholar 

  29. H. Noguchi and J.T. Yang, Dilatometric and refractometric studies of the helix-coil transition of poly-L-glutamic acid in aqueous solution, Biopolymers 1:359 (1963); volume and sound velocity changes accompanying the α-helix to β-form and coil to α-helix transitions in aqueous soltuions, Biopolymers 10:2569 (1971).

    Article  CAS  Google Scholar 

  30. S. Makino and H. Noguchi, Volume and sound velocity changes associated with coil-β transition of poly(S-carboxymethyl L-cysteins) in aqueous solution, Biopolymers 10:1253 (1971).

    Article  CAS  Google Scholar 

  31. K. Gekko and Y. Hasegawa, Effect of temperature on the compressibility of native globular proteins, J. Phvs. Chem. 93:426 (1989).

    Article  CAS  Google Scholar 

  32. C.S. Wright, R.A. Alden, and J. Kraut, Structure of subtilisin BPN’ at 2.5 Å resolution, Nature (London) 221:235 (1969).

    Article  CAS  Google Scholar 

  33. A.A. Rashin, M. Iofin, and B. Honig, Internal cavities and buried waters in globular proteins, Biochemistry 25:3619 (1986).

    Article  CAS  Google Scholar 

  34. C.E. Kundrot and F.M. Richards, Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres, J. Mol. Biol. 193:157 (1987).

    Article  CAS  Google Scholar 

  35. H. Frauenfelder, H. Hartmann, M. Karplus, I.D. Kuntz, J. Kuriyan, F. Parak, G.A. Petsko, D. Ringe, R.F. Tilton, M.L. Connolly, and N. Max, Thermal expansion of a protein, Biochemistry 26:254 (1987).

    Article  CAS  Google Scholar 

  36. J.F. Brandts, R.J. Oliveira, and C. Westort, Thermodynamics of protein denaturation: effect of pressure on the denaturation of ribonuclease A, Biochemistry 9:1038 (1979).

    Article  Google Scholar 

  37. Y. Nozaki and C. Tanford, The solubility of amino acis and two glycine peptides in aqueous ethanol and dioxane solutions, J. Biol. Chem. 246:2211 (1971).

    CAS  Google Scholar 

  38. C.C. Bigelow and M. Channon, Hydrophobicities of amino acids and proteins, in: “Handbook of Biochemistry and Molecular Biology, Proteins Vol. I,” G.D. Fasman, ed., CRC Press, Cleveland (1976).

    Google Scholar 

  39. C.C. Bigelow, The average hydrophobicity of proteins and the relation between it and protein structure, J. Theor. Biol. 16:187 (1967).

    Article  CAS  Google Scholar 

  40. P.Y. Chou and G.D. Fasman, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47:451 (1978).

    Google Scholar 

  41. S.A. Hawley, Reversible pressure-temperature denaturation of chymotryp-sinogen, Biochemistry 10:2436 (1971).

    Article  CAS  Google Scholar 

  42. A. Zipp and W. Kauzmann, Pressure denaturation of metmyoglobin, Biochemistry 12:4217 (1973).

    Article  CAS  Google Scholar 

  43. R. Lumry and A. Rosenberg, The water basis for mobile defects in proteins and the role of these defects in function, Colloq. Int. CNRS 246:55 (1975).

    Google Scholar 

  44. K. Gekko and K. Yamagami, to be published.

    Google Scholar 

  45. E. Stellwagen and H. Wilgus, Relationship of protein thermostability to accessible surface area, Nature (London) 275:342 (1978).

    Article  CAS  Google Scholar 

  46. P. Argos, M.G. Rossmann, U.M. Grau, H. Zuber, G. Frank, and J.D. Tratshin, Thermal stability and protein structure, Biochemistry 18:5698 (1979).

    Article  CAS  Google Scholar 

  47. P.K. Ponnuswarmy, R. Muthusamy, and P. Manavalan, Amino acid composition and thermal stability of proteins. Int. J. Biol. Macromol. 4:186 (1982).

    Article  Google Scholar 

  48. A.A. Zamyatnin, Protein volume in solution, Prog. Biophys. Mol. Biol. 24:109 (1972).

    Article  Google Scholar 

  49. A. Kato, K. Komatsu, K. Fujimoto, and K. Kobayashi, Relationship between surface properties and flexibility of proteins detected by the protease susceptibility, J. Agric. Food Chem. 33:931 (1985).

    Article  CAS  Google Scholar 

  50. J.J. Tarn and J.R. Whitaker, Rates and extents of hydrolysis of several caseins by pepsin, rennin, endothia parasitica protease and mucor pusillus protease, J. Dairy Sci. 55:1523 (1972).

    Article  Google Scholar 

  51. R. Vanderpoorten and M. Weckx, Breakdown of casein by rennet and microbial milk-clotting enzymes, Neth. Milk Dairy J. 26:47 (1972).

    CAS  Google Scholar 

  52. A.M. Townsend and S. Nakai, Relationship between hydrophob icity and foaming characteristics of food proteins, J. Food Sci. 48:588 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gekko, K. (1991). Flexibility of Globular Proteins in Water as Revealed by Compressibility. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics