Skip to main content

Solute-Polymer-Water Interactions and their Manifestations

  • Chapter
Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

This paper reviews recent work on the interactions among solutes, polymers, and water in model food systems. Four possible combinations of ionic or non-ionic solutes and polymers are discussed in terms of their water sorption behavior. Comparisons between experimental values and values calculated by a mass balance equation are made. The salt-protein, sucrose-starch, and salt-starch combinations sorbed less water than that predicted by calculated sorption values. This was attributed to the inability of the interacted solutes to sorb their full complement of water. On the other hand, the sucrose-protein combination exhibited an increase in the amount of water sorbed over that calculated by the mass balance equation. This was attributed to the increased hydration of the protein component, due to an effect of the sucrose. One of the major factors involved in these solute-polymer interactions is the competition for water among the solutes and polymers. This competition, in turn, is greatly influenced by the “state” of the water associated with these components.a Lastly, examples of how biological, chemical, and physico-chemical phenomena in foods are affected by these factors are also given. The phenomena discussed include mold germination, the Maillard reaction, ascorbic acid oxidation, protein functionality, starch gelatinization and retrogradation, and the complication of the order of mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.L. Snoeyink and D. Jenkins, “Water Chemistry,” John Wiley & Sons, New York (1980).

    Google Scholar 

  2. B.E. Conway, “Ionic Hydration in Chemistry and Biophysics,” Elsevier, New York (1981).

    Google Scholar 

  3. F. Franks, Water activity as a measure of biological viability and quality control. Cereal Foods World 27:403 (1982).

    CAS  Google Scholar 

  4. S.G. Gilbert, New concepts on water activity and storage stability, in: “The Shelf Life of Foods and Beverages,” G. Charalambous, ed., Elsevier, Amsterdam (1986).

    Google Scholar 

  5. H. Levine and L. Slade, Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems, in: “Water Science Reviews,” Vol. 3, F. Franks, ed., Cambridge University Press, Camridge (1988).

    Google Scholar 

  6. K.W. Lang, Physical, chemical and microbiological characterization of polymer-and solute-bound water, Ph.D. Thesis, Department of Food Science, University of Illinois at Urbana-Champaign (1980).

    Google Scholar 

  7. S.E. Smith, The sorption of water by high polymers, J. Amer. Chem. Soc. 69:646 (1947).

    Article  CAS  Google Scholar 

  8. F.F. Chu, Relationships of water content and composition of food to mold spore germination, M.Sc. Thesis, Rutgers University, New Brunswick, New Jersey (1984).

    Google Scholar 

  9. S.W. Pail, The state of water in food components related to germination of mold spores, Ph.D. Thesis, Rutgers University, New Brunswick, New Jersey (1984).

    Google Scholar 

  10. L.K. Hynes, Studies on the Maillard reaction. I. The effect of solute water and solutes on the Maillard reaction. II. Absorption and distribution of fructose-L-arginine in the rat, Masters Thesis, Department of Food Science, University of Illinois at Urbana-Champaign (1983).

    Google Scholar 

  11. K.W. Lang and M.P. Steinberg, Characterization of polymer and solute bound water by pulsed NMR, J. Food Sci. 48:517 (1983).

    Article  Google Scholar 

  12. G.E. Urbanski, L.S. Wei, A.I. Nelson, and M.P. Steinberg, Rheology models for pseudoplastic soy systems based on water binding, J. Food Sci. 48:1436 (1982).

    Article  Google Scholar 

  13. L. Slade and H. Levine, Non-equilibrium behavior of small carbohydrate-water systems, Pure Appl. Chem. 60:1841 (1988).

    Article  CAS  Google Scholar 

  14. P. Chinachoti and M.P. Steinberg, Interaction of sucrose with starch during dehydration as shown by water sorption, J. Food Sci. 49:1604 (1984).

    Article  CAS  Google Scholar 

  15. H.B. Bull and K. Breese, Water and solute binding by proteins. I. Electrolytes, Arch. Biochem. Biophvs. 137:299 (1970).

    Article  CAS  Google Scholar 

  16. S. Gal, Solvent versus non-solvent water in casein-sodium chloride-water systems, rn: “Water Relations in Foods,” R.B. Duckworth, ed., Academic Press, New York (1975).

    Google Scholar 

  17. S. Gal and R. Signer, Untersuchung der bindung von natriumchlorid durch casein mittels wasserdampf-Sorptionsmessungen, Makromol. Chem. 69:125 (1963).

    Article  CAS  Google Scholar 

  18. S. Gal, Hydration of sodium chloride bound by casein at medium water activities. J. Food Sci. 36:800 (1971).

    Article  CAS  Google Scholar 

  19. J.J. Hardy and M.P. Steinberg, Interaction between sodium chloride and paracasein as determined by water sorption, J. Food Sci. 49:127 (1984).

    Article  Google Scholar 

  20. T.D. McCune, Water vapor sorption by soy proteins, proteinates and hydrolysates, Ph.D. Thesis, University of Illinois at Urbana-Champaign (1981).

    Google Scholar 

  21. S.M. Neale and G.R. Williamson, The cellulose-water-salt system, J. Phys. Chem. 60:741 (1956).

    Article  CAS  Google Scholar 

  22. P. Chinachoti and M.P. Steinberg, Interaction of sodium chloride with raw starch in freeze-dried mixtures as shown by water sorption, J. Food Sci. 50:824 (1985).

    Article  Google Scholar 

  23. P. Chinachoti and M.P. Steinberg, Interaction of solutes with raw starch during desorption as shown by water retention, J. Food Sci. 51:450 (1986).

    Article  CAS  Google Scholar 

  24. P. Chinachoti and M.P. Steinberg, Interaction of sucrose with gelatin, egg albumin and gluten in freeze-dried mixtures as shown by water sorption, J. Food Sci. 53:932 (1988).

    Article  Google Scholar 

  25. H.K. Schachman and M.A. Lauffer, The hydration, size and shape of tobacco mosaic virus, J. Amer. Chem. Soc. 71:536 (1949).

    Article  CAS  Google Scholar 

  26. I.D. Kuntz and W. Kauzmann, Hydration of proteins and polypeptides, Adv. Protein Chem. 28:239 (1974).

    Article  CAS  Google Scholar 

  27. T. Arakawa and S.N. Timasheff, Preferential interactions of proteins with salts in concentrated solutions, Biochem. 21:6545 (1982).

    Article  CAS  Google Scholar 

  28. J.C. Lee and S.N. Timasheff, The stabilization of proteins by sucrose, J. Biol. Chem. 256:7193 (1981).

    CAS  Google Scholar 

  29. K.W. Lang and M.P. Steinberg, Linearization of the water sorption isotherm for homogeneous ingredients over aw 0. 30-0.95, J. Food Sci. 46:1450 (1981).

    Article  CAS  Google Scholar 

  30. T.S. Lioutas, I.A. Baianu, P.J. Bechtel, and M.P. Steinberg, Oxygen-17 and Sodium-23 nuclear magnetic resonance studies of myofibrillar protein interactions with water and electrolytes in relation to sorption isotherms, J. Agric. Food Chem. 36:437 (1988).

    Article  CAS  Google Scholar 

  31. A.G. Curme, S.J. Schmidt, and M.P. Steinberg, Mobility and activity of water in casein model systems as determined by 2H NMR and sorption isotherms, J. Food Sci., submitted.

    Google Scholar 

  32. S.J. Richardson and M.P. Steinberg, Application of nuclear magnetic resonance, in: “Water Activity: Theory and Applications to Food,” L.B. Rockland and L.R. Beuchat, eds., Marcel Dekker, New York (1987).

    Google Scholar 

  33. B.B. Garrett, A.B. Denison, and S.W. Rabideau, Oxygen-17 relaxation in water, J. Phvs. Chem. 71:2606 (1967).

    Article  CAS  Google Scholar 

  34. P. Chinachoti, unpublished data.

    Google Scholar 

  35. S.A. Brown and D. French, Specific adsorption of starch oligosaccharides in the gel phase of starch granules, Carbohydr. Res. 59:203 (1977).

    Article  CAS  Google Scholar 

  36. R.D. Spies and R.C. Hoseney, Effect of sugars on starch gelatinization, Cereal Chem. 59:128 (1982).

    Google Scholar 

  37. P.J. Carrillo, S.G. Gilbert, and H. Daun, Starch/solute interaction in water sorption as affected by pretreatment, J. Food Sci. 53:1199 (1988).

    Article  CAS  Google Scholar 

  38. P.J. Carrillo, S.G. Gilbert, and H. Daun, Starch/solute interactions by organic probe analysis: an inverse gas chromatography study, J. Food Sci. 54:162 (1989).

    Article  CAS  Google Scholar 

  39. B.H. Zimm and J.L. Lundberg, Sorption of vapors by high polymers, J. Phvs. Chem. 60:425 (1956).

    Article  CAS  Google Scholar 

  40. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in starch-sucrose systems by deuterium and oxygen-17 NMR, Starke 39:302 (1987).

    Article  CAS  Google Scholar 

  41. J.A. Rendleman, Cereal complexes: binding of calcium by bran and components of bran, Cereal Chem. 59:302 (1982).

    CAS  Google Scholar 

  42. J.A. Rendleman and C.A. Grobe, Cereal complexes: binding of zinc by bran and components of bran, Cereal Chem. 59:310 (1982).

    CAS  Google Scholar 

  43. L.F. Hood and G.K. O’Shea, Calcium binding by hydroxypropyl distarch phosphate and unmodified starches, Cereal Chem. 54:266 (1977).

    CAS  Google Scholar 

  44. J.A. Rendleman, Ionization of carbohydrates in the presence of metal hydroxides and oxides, in: “Carbohydrates in Solution,” R.F. Gould, ed., Advances in Chemistry Series 117, Amer. Chem. Soc, Washington, D.C. (1973).

    Google Scholar 

  45. J.N. BeMiller and G.W. Pratt, Sorption of water, sodium sulfate, and water-soluble alcohols by starch granules in aqueous suspension, Cereal Chem. 58:517 (1981).

    CAS  Google Scholar 

  46. R. Kohn, Ion binding on polyuronates-alginate and pectin. Pure Appl. Chem. 42:371 (1975).

    Article  CAS  Google Scholar 

  47. J. Farrar and S.M.J. Neale, The distribution of ions between cellulose and solutions of electrolyte, Colloid Sci. 7:186 (1952).

    Article  CAS  Google Scholar 

  48. P. Chinachoti and M.P. Steinberg, Crystallinity of sucrose by X-ray diffraction, waxy maize starch content, and water activity, J. Food Sci. 51:456 (1986).

    Article  CAS  Google Scholar 

  49. M. Karel, “CRC Critical Reviews in Food Technology,” Chemical Rubber Co., Cleveland, Ohio (1973).

    Google Scholar 

  50. C. San Jose, N.G. Asp, A. Burval, and A. Dahlqvist, Water sorption in lactose hydrolyzed dry milk, J. Dairy Sci. 60:1539 (1977).

    Article  CAS  Google Scholar 

  51. W.F. Racicot, L.D. Satterlee, and M.A. Hanna, Interaction of lactose and sucrose with corn meal proteins during extrusion, J. Food Sci. 46:1500 (1981).

    Article  CAS  Google Scholar 

  52. D.A. Lonergan, O. Fennema, and C.H. Amundson, Stability of proteins in ultrafiltrated, low-lactose milk concentrate during frozen storage, J. Food Sci. 46:1603 (1981).

    Article  CAS  Google Scholar 

  53. E.I. Minson, O. Fennema, and C.H. Amundson, Efficacy of various carbohydrates as cryoprotectants of casein for skim milk, J. Food Sci. 46:1597 (1981).

    Article  CAS  Google Scholar 

  54. K. Gekko and S.N. Timasheff, Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures, Biochem. 20:4667 (1981).

    Article  CAS  Google Scholar 

  55. J.C. Lee and S.N. Timasheff, The stabilization of proteins by sucrose, J. Biol. Chem. 256:7193 (1981).

    CAS  Google Scholar 

  56. T. Arakawa and S.N. Timasheff, Stabilization of protein structure by sugars, Biochem. 21:6536 (1982).

    Article  CAS  Google Scholar 

  57. P. Walstra, Non-solvent water and steric exclusion of solute. Kolloid Z, Z. Polvm. 251:603 (1973).

    Article  CAS  Google Scholar 

  58. R.B. Duckworth, Solute mobility in relation to water content and water activity, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  59. Anon., Science/Technology Concentrates, Chem. and Eng. January:29 (1983).

    Google Scholar 

  60. K. Ross, Differential scanning calorimetry of nonfreezable water in solute-macromolecule-water systems. J. Food Sci. 43:1812 (1978).

    Article  CAS  Google Scholar 

  61. R.B. Duckworth and C.E. Kelly, Studies of solution processes in hydrated starch and agar at moisture levels using wide-line nuclear magnetic resonance, J. Food Technol. 8:105 (1973).

    Article  CAS  Google Scholar 

  62. P. Chinachoti and M.P. Steinberg, Crystallinity of waxy maize starch as influenced by ambient temperature absorption and desorption, sucrose content and water activity, J. Food Sci. 51:997 (1986).

    Article  Google Scholar 

  63. L.R. Beuchat, Microbial stability as affected by water activity, Cereal Foods World 26:345 (1981).

    Google Scholar 

  64. J.I. Pitt, Xerophilic fungi and the spoilage of foods of plant origin, in: “Water Relationships in Foods,” R.B. Duckworth, ed., Academic Press, New York (1975).

    Google Scholar 

  65. W.J. Scott, Water relations of food spoilage microorganisms, Adv. Food Res. 7:83 (1957).

    Article  CAS  Google Scholar 

  66. T.P. Labuza and R. Contreras-Medelin, Prediction of moisture protection requirements for foods, Cereal Foods World 26:335 (1981).

    Google Scholar 

  67. F. Franks, Physiological water stress, in: “Biophysics of Water,” F. Franks, ed., John Wiley & Sons, New York (1982).

    Google Scholar 

  68. B. Hahn-Hageral, Water activity: a possible external regulation in biotechnical processes. Enzyme Microb. Technol. 8:322 (1986).

    Article  Google Scholar 

  69. R.B. Duckworth, J.Y. Allison, and J.A. Clapperton, in: “Intermediate Moisture Foods,” R. Davies, G.G. Birch, and K.H. Parker, eds., Applied Science, London (1976).

    Google Scholar 

  70. T.C. Lanier, Functional properties of surimi, Food Technol. March:107 (1986).

    Google Scholar 

  71. T.C. Lanier, Method of retarding the deterioration of meat products, European Patent Application EP 0 190 491 A2 (1986).

    Google Scholar 

  72. E.J. Baxter and E.E. Hester, The effect of sucrose on gluten development and the solubility of the proteins of a soft wheat flour, Cereal Chem. 35:366 (1958).

    CAS  Google Scholar 

  73. A. Chungcharoen and D.B. Lund, Influences of solutes and water on rice starch gelatinization, Cereal Chem. 64:241 (1987).

    Google Scholar 

  74. G.E. Urbanski, L.S. Wei, A.I. Nelson, and M.P. Steinberg, Effect of solutes on rheology of soy flour and its components, J. Food Sci. 47:792 (1982).

    Article  Google Scholar 

  75. G.E. Urbanski, L.S. Wei, A.I. Nelson, and M.P. Steinberg, Rheology and water imbibing of major fractions of soybean beverage, J. Food Sci. 47:1021 (1982).

    Article  Google Scholar 

  76. G.E. Urbanski, L.S. Wei, A.I. Nelson, and M.P. Steinberg, Flow characteristics of soybean constituents controlled by ratio of total to imbibed water, J. Food Sci. 48:691 (1983).

    Article  Google Scholar 

  77. D. Eagland, Protein hydration — its role in stabilizing the helix conformation of the protein, in: “Water Relations in Foods,” R.B. Duckworth, ed., Academic Press, New York (1975).

    Google Scholar 

  78. M. Babajimopoulos, S. Damodaran, S.S.H. Rizvi, and J.E. Kinsella, Effects of various anions on the rhelogical and gelling behavior of soy proteins: thermodynamic observations, J. Agric. Food Chem. 31:1270 (1983).

    Article  CAS  Google Scholar 

  79. H. Levine and L. Slade, Influence of the glassy and rubbery states on the thermal, mechanical, and structural properties of doughs and baked products, in: “Dough Rheology and Baked Product Texture,” H. Faridi and J.M. Faubion, eds., Van Nostrand Reinhold, NY (1990).

    Google Scholar 

  80. E.P. Naryshkina, NMR study of the mobility of macromolecules and water in solutions and gelatin gels, Deposited Doc. VINITI 575-82, 653-7 (1981) (Abstract #1500977, Chemical Abstracts, Vol. 98, 1983).

    Google Scholar 

  81. E.P. Naryshkina, V. Ya. Volkov, A.I. Dolinnyi, and V.N. Izmailova, Study of gelatin gel formation by high-resolution nuclear magnetic resonance, Kolloidn Zh. 44:356 (1982) (Abstract #24424, Chemical Abstracts, Vol. 97, 1982).

    CAS  Google Scholar 

  82. A.S. Kozlov, A.S. Zholbolsynova, and E.A. Bekturov, Effect of carbohydrates on the formation of edible gelatin gels, Izv. Akad. Nauk Kaz. SSR. Ser. Khim. 3:44 (1984) (Abstract #53487Z, Chemical Abstracts, Vol. 101, 1984).

    Google Scholar 

  83. C.C. Lai, S.G. Gilbert, and C.H. Mannheim, Thermodynamics of water-egg powders interaction, J. Food Sci. 50:1615 (1985).

    Article  Google Scholar 

  84. C.Y. Ma, L.M. Poste, and J. Holme, Effects of chemical modifications on the physicochemical and cake-baking properties, Can. Inst. Food Sci. Technol. J. 19:17 (1986).

    Article  CAS  Google Scholar 

  85. L.J. Lo, V.A. White, and, P. Chinachoti, Effect of sucrose on water binding behavior of wheat gluten as determined by 2H, 17O, and 13C NMR, J. Food Sci., submitted.

    Google Scholar 

  86. W. Bushuk, Functionality of wheat proteins in dough. Cereal Foods World 29:162 (1984).

    CAS  Google Scholar 

  87. N.N. Hellman, B. Fairchild, and F.R. Senti, The bread staling problem. Molecular organization of starch upon aging of concentrated starch gels at various moisture level, Cereal Chem. 31:495 (1954).

    CAS  Google Scholar 

  88. R. Collison and W.G. Chilton, Starch gelatinization as a function of water content, J. Food Technol. 9:309 (1974).

    Article  Google Scholar 

  89. J.W. Donovan, Phase transitions of the starch-water system, Biopolymers 18:263 (1979).

    Article  CAS  Google Scholar 

  90. C.G. Biliaderis, C.M. Page, T.J. Maurice, and B.O. Juliano, Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch, J. Agric. Food Chem. 34:6 (1986).

    Article  CAS  Google Scholar 

  91. M. Wooton and A. Bamunuarachchi, Application of differential scanning calorimetry to starch gelatinization. III. Effect of sucrose and sodium chloride, Starke 31:126 (1980).

    Article  Google Scholar 

  92. I.D. Evans and D.R. Haisman, The effect of solutes on the gelatinization temperature range of potato starch, Starke 34:224 (1982).

    Article  CAS  Google Scholar 

  93. B.J. Oosten, Effects of organic molecules on the gelatinization temperature of starch, Starke 36:18 (1984).

    Article  CAS  Google Scholar 

  94. P. Chinachoti, M.P. Steinberg, and R. Villota, A model for quantitating energy and degree of starch gelatinization based on water, sugar and salt contents, J. Food Sci.. in press.

    Google Scholar 

  95. D. Lund, Influence of time, temperature, moisture, ingredients and processing conditions on starch gelatinization. CRC Crit. Revs. Food Sci, and Nutr. 20:249 (1984).

    Article  CAS  Google Scholar 

  96. D.W. James and R.L. Frost, Structure of aqueous solutions. Structure making and structure breaking in solutions of sucrose and urea, J. Phvs. Chem, 78:1754 (1977).

    Article  Google Scholar 

  97. J.L. Jane, P.A. Seib, and R.C. Hoseney, Mechanism of starch gelatinization in neutral salt solutions, presented at AACC Annual meeting, Nashville, Tennessee (1987).

    Google Scholar 

  98. L. Hansen, C.S. Setser, and J. Paukstelis, Investigations of sugar-starch interactions with increasing temperature using 13C-NMR spectroscopy, presented at AACC Annual meeting, Nashville, Tennessee (1987).

    Google Scholar 

  99. H.S. Lim, D. Sobczynska, and C. Setser, 17O NMR studies on sucrose-wheat starch-water interactions with increasing temperature, presented at 50th Annual IFT meeting, Chicago, Illinois (1989).

    Google Scholar 

  100. H.J. Hennig, H. Lechert, and W. Goemann, Untersuchung des quellverhaltens von starke mit hilfe der kernresonanz-impuis-Spektroskopie, Starke 28:10 (1976).

    Article  CAS  Google Scholar 

  101. H. Lechert and I. Schwier, Kernresonanz-Untersuchungen zum mechanismus der wasserbeweglichkeit in verschiednen starken, Starke 34:6 (1982).

    Article  CAS  Google Scholar 

  102. H. Lechert, W. Maiwald, R. Kothe, and W. Basler, NMR-study of water in some starches and vegetables, J. Food Proc. Preserv. 3:275 (1980).

    Article  Google Scholar 

  103. S.K. Kim and B.L. D’appolonia, Bread staling studies. III. Effect of pentosans on dough bread, and bread staling rate, Cereal Chem. 54:225 (1977).

    CAS  Google Scholar 

  104. S.K. Kim and B.L. D’appolonia, Effect of pentosans on the retrogradation of wheat starch gels, Cereal Chem. 54:150 (1977).

    CAS  Google Scholar 

  105. A.E. Salem and J.A. Johnson, Influence of various oligosaccharides on staling of bread, Food Technol. May:849 (1965).

    Google Scholar 

  106. D.P. Bone, E.L. Shannon, and K.D. Ross, The lowering of water activity by order of mixing in concentrated solutions, in: “Water Relations of Foods,” R.B. Duckworth, ed., Academic Press, New York (1975).

    Google Scholar 

  107. R.E. Mudgett, A.C. Smith, D.I.C. Wang, and S.A. Goldblith, Prediction of the relative dielectric loss factor in aqueous solutions of nonfat dried milk through chemical simulation, J. Food Sci. 36:915 (1971).

    Article  CAS  Google Scholar 

  108. N. Ayya, S.J. Richardson, and B.P. Klein, Characterization of sodium binding in hydrocolloid systems using 23Na NMR, presented at AACC Annual meeting, Nashville, Tennessee (1987).

    Google Scholar 

  109. H.K. Leung, J.A. Magnuson, and B.L. Bruinsma, Water binding of wheat flour doughs and breads as studied by deuteron relaxation, J. Food Sci. 48:95 (1983).

    Article  CAS  Google Scholar 

  110. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in sucrose solutions determined by deuterium and oxygen-17 nuclear magnetic resonance measurements, J. Food Sci. 52:806 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chinachoti, P., Schmidt, S.J. (1991). Solute-Polymer-Water Interactions and their Manifestations. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics