A Food Polymer Science Approach to Structure-Property Relationships in Aqueous Food Systems: Non-Equilibrium Behavior of Carbohydrate-Water Systems

  • Louise Slade
  • Harry Levine
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)

Abstract

Descriptions of the functional significance of carbohydrates based on the familiar equilibrium thermodynamics of very dilute solutions fail for pragmatical time scales and conditions, which are far from equilibrium. This is not too surprising, since limiting partial-molar properties reflect the independent behavior of solute in the limit of infinite dilution where free volume is maximum at a given temperature, while Tg′-Wg′ properties reflect the cooperative behavior of solute-plasticizer blends at the limiting minimum value of free volume to observe relaxation within experimental time scales. Carbohydrate-water systems, with well-characterized structure and MW above and below the entanglement limit, provide a unique framework for the investigation of non-equilibrium behavior. Thermal analysis by DSC reveals the central role of water as a plasticizer for carbohydrates and of the glass transition as a physicochemical parameter that governs their properties, processing, and stability. A classical polymer science approach is used to study structure-property relationships of carbohydrates as water-compatible food polymers, which are treated as homologous systems of polymers, oligomers, and monomers with their plasticizers and solvents. Mechanical relaxation behavior is described by a “transformation map” of the critical variables of moisture content, temperature, and time. The glass curve is a reference contour, which represents the limiting isogram for free volume, local viscosity, relaxation rates, and rotational and translational mobility. Map domains are discussed as aspects of “water dynamics,” to dispel the myth of “bound water,” and “glass dynamics,” to relate to macroscopic structure and collapse phenomena. A particular glass with invariant composition and Tg (prepared by freeze-concentration) is identified as a pivotal and practical reference state. The Tg observed during DSC analysis is often an effective Tg, resulting from instantaneous relative relaxation rates and non-uniform distribution of total sample moisture. Non-equilibrium melting, annealing, and gelation/recrystallization of kinetically metastable, partially crystalline carbohydrate systems exhibit non-Arrhenius kinetics which depend on the magnitude of ΔT above the appropriate Tg, as defined by WLF relaxation transformations. Thermally reversible aqueous gels (crystallized from an under-cooled, rubbery melt) are described by a “fringed micelle” structural model for a three-dimensional polymer network, composed of microcrystalline junction zones crosslinking plasticized amorphous regions of flexible-coiled, entangled chain segments.

Keywords

Free Volume Food System Native Starch Rubbery State Solidus Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Franks, M.H. Asquith, C.C. Hammond, H.B. Skaer, and P. Echlin, Polymeric cryoprotectants in the preservation of biological ultrastructure. I., J. Microsc. 110:223 (1977).CrossRefGoogle Scholar
  2. 2.
    F. Franks, The properties of aqueous solutions at subzero temperatures, in: “Water: A Comprehensive Treatise,” Vol. 7, F. Franks, ed., Plenum Press, New York (1982).Google Scholar
  3. 3.
    F. Franks, “Biophysics and Biochemistry at Low Temperatures,” Cambridge University Press, Cambridge (1985).Google Scholar
  4. 4.
    F. Franks, Complex aqueous systems at subzero temperatures, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  5. 5.
    F. Franks, Metastable water at subzero temperatures. J. Microsc. 141:243 (1986).CrossRefGoogle Scholar
  6. 6.
    F. Franks, Improved freeze-drying: an analysis of the basic scientific principles, Process Biochem. 24 (1):R3 (1989).Google Scholar
  7. 7.
    L. Finegold, F. Franks, and R.H.M. Hatley, Glass/rubber transitions and heat capacities of binary sugar blends, J. Chem. Soc. Faraday Trans. I 85:2945 (1989).CrossRefGoogle Scholar
  8. 8.
    L. SladeandH. Levine, Thermal analysis of starch and gelatin, in: “Proceedings 13th NATAS Conference,” A.R. McGhie, ed., NATAS, Philadelphia (1984).Google Scholar
  9. 9.
    L. Slade, Starch properties in processed foods: staling of starch-based products, presented at AACC 69th Ann. Meet., Minneapolis, abs. 112 (1984).Google Scholar
  10. 10.
    T.J. Maurice, L. Slade, C. Page, and R. Sirett, Polysaccharide-water interactions — thermal behavior of rice starch, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht, (1985).Google Scholar
  11. 11.
    C.G. Biliaderis, C.M. Page, L. Slade, and R.R. Sirett, Thermal behavior of amylose-lipid complexes, Carbohvdr. Polym. 5:367 (1985).CrossRefGoogle Scholar
  12. 12.
    L. Slade, R. Altomare, R. Oltzik, and D.G. Medcalf, Accelerated staling of starch-based food products, U.S. patent 4,657,770 (1987).Google Scholar
  13. 13.
    L. Slade and H. Levine, Non-equilibrium melting of native granular starch. Part I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches, Carbohydr. Polym. 8:183 (1988).CrossRefGoogle Scholar
  14. 14.
    L. Slade and H. Levine, Intermediate moisture systems; concentrated and supersaturated solutions; pastes and dispersions; water as plasticizer; the mystique of “bound” water; thermodynamics versus kinetics, presented at Faraday Divion, Royal Society of Chemistry Discussion Conference — Water Activity: A Credible Measure of Technological Performance and Physiological Viability?, Cambridge (1985).Google Scholar
  15. 15.
    L. Slade and H. Levine, Non-equilibrium behavior of small carbohydrate-water systems, Pure Appl. Chem. 60:1841 (1988).CrossRefGoogle Scholar
  16. 16.
    L. Slade and H. Levine, Polymer-chemical properties of gelatin in foods, in: “Advances in Meat Research, Vol. 4 — Collagen as a Food,” A.M. Pearson, T.R. Dutson, and A. Bailey, eds., AVI, Westport (1987).Google Scholar
  17. 17.
    B.A. Cole, H.I. Levine, M.T. McGuire, K.J. Nelson, and L. Slade, Soft, frozen dessert formulation, U.S. patent 4,374,154 (1983).Google Scholar
  18. 18.
    B.A. Cole, H.I. Levine, M.T. McGuire, K.J. Nelson, and L. Slade, Soft, frozen dessert formulation, U.S. patent 4,452,824 (1984).Google Scholar
  19. 19.
    T.W. Schenz, M.A. Rosolen, H. Levine, and L. Slade, DMA of frozen aqueous solutions, in: “Proceedings 13th NATAS Conference,” A.R. McGhie, ed., NATAS, Philadelphia (1984).Google Scholar
  20. 20.
    H. Levine and L. Slade, A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs), Carbohydr. Polym. 6:213 (1986).CrossRefGoogle Scholar
  21. 21.
    H. Levine and L. Slade, Collapse phenomena — a unifying concept for interpreting the behavior of low-moisture foods, in: “Food Structure — Its Creation and Evaluation,” J.R. Mitchell and J.M.V. Blanshard, eds., Butterworths, London (1988).Google Scholar
  22. 22.
    H. Levine and L. Slade, Principles of cryostabilization technology from structure/property relationships of water-soluble food carbohydrates — review, Cryo-Lett. 9:21 (1988).Google Scholar
  23. 23.
    H. Levine and L. Slade, Thermomechanical properties of small carbohydrate-water glasses and “rubbers”: kinetically-metastable systems at subzero temperatures, J. Chem. Soc. Faraday Trans. I 84:2619 (1988).CrossRefGoogle Scholar
  24. 24.
    H. Levine and L. Slade, A food polymer science approach to the practice of cryostabilization technology, Comments Agric. Food Chem. 1:315 (1989).Google Scholar
  25. 25.
    H. Levine and L. Slade, Response to the letter by Simatos, Blond, and Le Meste on the relation between glass transition and stability of a frozen product, Cryo-Lett. 10:347 (1989).Google Scholar
  26. 26.
    H. Levine and L. Slade, Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems, in: “Water Science Reviews,” Vol. 3, F. Franks, ed., Cambridge University Press, Cambridge (1988).Google Scholar
  27. 27.
    L. Slade, H. Levine, and J.W. Finley, Protein-water interactions: water as a plasticizer of gluten and other protein polymers, in: “Protein Quality and the Effects of Processing,” D. Phillips and J.W. Finley, eds., Marcel Dekker, New York (1989).Google Scholar
  28. 28.
    H. Levine and L. Slade, Influences of the glassy and rubbery states on the thermal, mechanical, and structural properties of doughs and baked products, in: “Dough Rheology and Baked Product Texture: Theory and Practice,” H. Faridi and J.M. Faubion, eds., Van Nostrand Rein-hold/AVI, New York (1989).Google Scholar
  29. 29.
    L. Slade and H. Levine, Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety, CRC Crit. Revs. Food Sci. Nutr.: in press (1990).Google Scholar
  30. 30.
    L. Slade and H. Levine, Structural stability of intermediate moisture foods — a new understanding?, in: “Food Structure — Its Creation and Evaluation,” J.R. Mitchell and J.M.V. Blanshard, eds., Butter-worths, London (1988).Google Scholar
  31. 31.
    H. Levine and L. Slade, Interpreting the behavior of low-moisture foods, in: “Water and Food Quality,” T.M. Hardman, ed., Elsevier, London (1989).Google Scholar
  32. 32.
    H. Levine and L. Slade, Cryostabilization technology: thermoanalytical evaluation of food ingredients and systems, in: “Thermal Analysis of Foods,” C.-Y. Ma and V.R. Harwalkar, eds., Elsevier Applied Science, London (1990).Google Scholar
  33. 33.
    L. Slade and H. Levine, Recent advances in starch retrogradation, in: “Industrial Polysaccharides — The Impact of Biotechnology and Advanced Methodologies,” S.S. Stivala, V. Crescenzi, and I.C.M. Dea, eds., Gordon and Breach Science, New York (1987).Google Scholar
  34. 34.
    L. Slade and H. Levine, Thermal analysis of starch, in: “1988 CRA Scientific Conference,” Corn Refiners Assoc., Washington, D.C. (1988).Google Scholar
  35. 35.
    L. Slade and H. Levine, A food polymer science approach to selected aspects of starch gelatinization and retrogradation, in: “Frontiers in Carbohydrate Research-1: Food Applications,” R.P. Millane, J.N. Be-Miller, and R. Chandrasekaran, eds., Elsevier Applied Science, London (1989).Google Scholar
  36. 36.
    G.W. White and S.H. Cakebread, The glassy state in certain sugar-containing food products, J. Food Technol. 1:73 (1966).CrossRefGoogle Scholar
  37. 37.
    C. van den Berg, Vapour sorption equilibria and other water-starch interactions; a physico-chemical approach, Doctoral Thesis, Agricultural Univ., Wageningen (1981).Google Scholar
  38. 38.
    C. van den Berg, On the significance of water activity in low moisture systems; water vapor sorption equilibrium and hysteresis; the starch/water system as a model, presented at Faraday Divion, Royal Society of Chemistry Discussion Conference — Water Activity: A Credible Measure of Technological Performance and Physiological Viability?, Cambridge (1985).Google Scholar
  39. 39.
    C. van den Berg, Water activity, in: “Concentration and Drying of Foods,” D. MacCarthy, ed., Elsevier Applied Science, London (1986).Google Scholar
  40. 40.
    C.G. Biliaderis, C.M. Page, T.J. Maurice, and B.O. Juliano, Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch, J. Agric. Food Chem. 34:6 (1986).CrossRefGoogle Scholar
  41. 41.
    J.M.V. Blanshard, The significance of the structure and function of the starch granule in baked products, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).Google Scholar
  42. 42.
    J.M.V. Blanshard, Starch granule structure and function: physicochemical approach, in: “Starch: Properties and Potential,” T. Galliard, ed., John Wiley & Sons, New York (1987).Google Scholar
  43. 43.
    J.M.V. Blanshard, Elements of cereal product structure, in: “Food Structure — Its Creation and Evaluation,” J.M.V. Blanshard and J.R. Mitchell, eds., Butterworths, London (1988).Google Scholar
  44. 44.
    J.M.V. Blanshard and F. Franks, Ice crystallization and its control in frozen food systems, in: “Food Structure and Behaviour,” J.M.V. Blanshard and P. Lillford, eds., Academic Press, London (1987).CrossRefGoogle Scholar
  45. 45.
    R.D.L. Marsh and J.M.V. Blanshard, The application of polymer crystal growth theory to the kinetics of formation of the B-amylose polymorph in a 50% wheat starch gel, Carbohvdr. Polym. 9:301 (1988).CrossRefGoogle Scholar
  46. 46.
    S.F. Edwards, P.J. Lillford, and J.M.V. Blanshard, Gels and networks in practice and theory, in: “Food Structure and Behaviour,” J.M.V. Blanshard and P. Lillford, eds., Academic Press, London (1987).Google Scholar
  47. 47.
    S. Ablett, G.E. Attenburrow, and P.J. Lillford, The significance of water in the baking process, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).Google Scholar
  48. 48.
    G.E. Attenburrow, R.M. Goodband, L.J. Taylor, and P.J. Lillford, Structure, mechanics, and texture of a food sponge, J. Cereal Sci. 9:61 (1989).CrossRefGoogle Scholar
  49. 49.
    P.J. Lillford, The polymer/water relationship — its importance for food structure, In: “Food Structure — Its Creation and Evaluation,” J.M.V. Blanshard and J.R. Mitchell, eds., Butterworths, London (1988).Google Scholar
  50. 50.
    M. Karel, Effects of water activity and water content on mobility of food components, and their effects on phase transitions in food systems, In: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  51. 51.
    M. Karel, Control of lipid oxidation in dried foods, in: “Concentration and Drying of Foods,” D. MacCarthy, ed., Elsevier Applied Science, London (1986).Google Scholar
  52. 52.
    M. Karel and R. Langer, Controlled release of food additives, in: “Flavor Encapsulation,” ACS Symp. Ser. 370, S.J. Risch and G.A. Reineccius, eds., American Chemical Society, Washington, D.C. (1988).Google Scholar
  53. 53.
    D. Simatos and M. Karel, Characterizing condition of water in foods: physico-chemical aspects, in: “Food Preservation by Moisture Control,” C.C. Seow, ed., Elsevier Applied Science, London (1988).Google Scholar
  54. 54.
    D. Simatos, G. Blond, and M. Le Meste, Relation between glass transition and stability of a frozen product, Cryo-Lett. 10:77 (1989).Google Scholar
  55. 55.
    R.C. Hoseney, K. Zeleznak, and C.S. Lai, Wheat gluten: a glassy polymer, Cereal Chem. 63:285 (1986).Google Scholar
  56. 56.
    D.A. Yost and R.C. Hoseney, Annealing and glass transition of starch, Starke 38:289 (1986).CrossRefGoogle Scholar
  57. 57.
    K.J. Zeleznak and R.C. Hoseney, The glass transition in starch, Cereal Chem. 64:121 (1987).Google Scholar
  58. 58.
    K.J. Zeleznak and R.C. Hoseney, Characterization of starch from bread aged at different temperatures, Starke 39:231 (1987).CrossRefGoogle Scholar
  59. 59.
    L.C. Doescher, R.C. Hoseney, and G.A. Milliken, Mechanism for cookie dough setting, Cereal Chem. 64:158 (1987).Google Scholar
  60. 60.
    S.G. Ring, P. Colonna, K.J. l’Anson, M.T. Kalichevsky, M.J. Miles, V.J. Morris, and P.D. Orford, Gelation and crystallization of amylopectin, Carbohydr. Res. 162:277 (1987).CrossRefGoogle Scholar
  61. 61.
    P.D. Orford, R. Parker, S.G. Ring, and A.C. Smith, The effect of water as a diluent on the glass transition behavior of malto-oligosaccharides, amylose and amylopectin, Int. J. Biol. Macromol. 11:91 (1989).CrossRefGoogle Scholar
  62. 62.
    P.L. Russell, Gelatinization of starches of different amylose/amylopectin content — DSC study, J. Cereal Sci. 6:133 (1987).CrossRefGoogle Scholar
  63. 63.
    H.F. Zobel, Starch crystal transformations and their industrial importance, Starke 40:1 (1988).CrossRefGoogle Scholar
  64. 64.
    H.F. Zobel, S.N. Young, and L.A. Rocca, Starch gelatinization: an X-ray diffraction study, Cereal Chem. 65:443 (1988).Google Scholar
  65. 65.
    T. Soesanto and M.C. Williams, Volumetric interpretation of viscosity for concentrated and dilute sugar solutions, J. Phys. Chem. 85:3338 (1981).CrossRefGoogle Scholar
  66. 66.
    A.G. Atkins, Basic principles of mechanical failure in biological systems, in: “Food Structure and Behaviour,” J.M.V. Blanshard and P. Lillford, eds., Academic Press, London (1987).Google Scholar
  67. 67.
    S. Quinquenet, C. Grabielle-Madelmont, M. Ollivon, and M. Serpelloni, Influence of water on pure sorbitol polymorphism, J. Chem. Soc. Faraday Trans. I 84:2609 (1988).CrossRefGoogle Scholar
  68. 68.
    Y. Fujio and J.K. Lim, Correlation between the glass-transition point and color change of heat-treated gluten, Cereal Chem. 66:268 (1989).Google Scholar
  69. 69.
    E.A. Niediek, Effect of processing on the physical state and aroma sorption properties of carbohydrates, Food Technol. 42(11):81 (1988).Google Scholar
  70. 70.
    S. Bone and R. Pethig, Dielectric studies of the binding of water to lysozyme, J. Mol. Biol. 157:571 (1982).CrossRefGoogle Scholar
  71. 71.
    P.J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Ithaca (1953).Google Scholar
  72. 72.
    P.J. Flory, Introductory lecture — gels and gelling processes, Faraday Disc. Chem. Soc. 57:7 (1974).CrossRefGoogle Scholar
  73. 73.
    M.L. Williams, R.F. Landel, and J.D. Ferry, Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Amer. Chem. Soc. 77:3701 (1955).CrossRefGoogle Scholar
  74. 74.
    J.A. Brydson, The glass transition, melting point and structure, in: “Polymer Science,” A.D. Jenkins, ed., North Holland, Amsterdam (1972).Google Scholar
  75. 75.
    B. Wunderlich, “Macromolecular Physics, Vol. 1 — Crystal Structure, Morphology, Defects,” Academic Press, New York (1973).Google Scholar
  76. 76.
    B. Wunderlich, “Macromolecular Physics, Vol. 2 — Crystal Nucleation, Growth, Annealing,” Academic Press, New York (1976).Google Scholar
  77. 77.
    B. Wunderlich, “Macromolecular Physics, Vol. 3 — Crystal Melting,” Academic Press, New York (1980).Google Scholar
  78. 78.
    B. Wunderlich, The basis of thermal analysis, in: “Thermal Characterization of Polymeric Materials,” E.A. Turi, ed., Academic Press, Orlando (1981).Google Scholar
  79. 79.
    J.D. Ferry, “Viscoelastic Properties of Polymers,” 3rd edn., John Wiley & Sons, New York (1980).Google Scholar
  80. 80.
    S.P. Rowland, ed., “Water in Polymers,” ACS Symp. Ser. 127, American Chemical Society, Washington, D.C. (1980).CrossRefGoogle Scholar
  81. 81.
    J.K. Sears and J.R. Darby, “The Technology of Plasticizers,” Wiley-Interscience, New York (1982).Google Scholar
  82. 82.
    A. Eisenberg, The glassy state and the glass transition, in: “Physical Properties of Polymers,” J.E. Mark, A. Eisenberg, W.W. Graessley, L. Mandelkern, and J.L. Koenig, eds., American Chemical Society, Washington, D.C. (1984).Google Scholar
  83. 83.
    T.S. Ellis, Moisture-induced plasticization of amorphous polyamides and their blends, J. Appl. Polym. Sci. 36:451 (1988).CrossRefGoogle Scholar
  84. 84.
    W.W. Graessley, Viscoelasticity and flow in polymer melts and concentrated solutions, in: “Physical Properties of Polymers,” J.E. Mark, A. Eisenberg, W.W. Graessley, L. Mandelkern, and J.L. Koenig, eds., American Chemical Society, Washington, D.C. (1984).Google Scholar
  85. 85.
    F.W. Billmeyer, “Textbook of Polymer Science,” 3rd edn., Wiley-Interscience, New York (1984).Google Scholar
  86. 86.
    L.H. Sperling, “Introduction to Physical Polymer Science,” Wiley-Interscience, New York (1986).Google Scholar
  87. 87.
    A.G. Walton, Nucleation in liquids and solutions, in: “Nucleation,” A.C. Zettlemoyer, ed., Marcel Dekker, New York (1969).Google Scholar
  88. 88.
    J.M.G. Cowie, “Polymers: Chemistry and Physics of Modern Materials,” Intertext, New York (1973).Google Scholar
  89. 89.
    E.A. Turi, ed., “Thermal Characterization of Polymeric Materials,” Academic Press, Orlando (1981).Google Scholar
  90. 90.
    R.N. Haward, ed., “The Physics of Glassy Polymers,” Applied Science, London (1973).Google Scholar
  91. 91.
    W. Kauzmann, Nature of the glassy state and behavior of liquids at low temperatures. Chem. Rev. 43:219 (1948).CrossRefGoogle Scholar
  92. 92.
    S.E.B. Petrie, The problem of thermodynamic equilibrium in glassy polymers, in: “Polymeric Materials: Relationships Between Structure and Mechanical behavior,” E. Baer and S.V. Radcliffe, eds., American Society Metals, Metals Park, Ohio (1975).Google Scholar
  93. 93.
    D.R. Buchanan and J.P. Walters, Glass-transition temperatures of polyamide textile fibers. Part I: effect of water, Textile Res. J. 47:398 (1977).Google Scholar
  94. 94.
    A. Sharpies, Crystallinity, in: “Polymer Science,” A.D. Jenkins, ed., North Holland, Amsterdam (1972).Google Scholar
  95. 95.
    J.F. Fuzek, Glass transition temperature of wet fibers: its measurement and significance, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, D.C. (1980).Google Scholar
  96. 96.
    P. Moy and F.E. Karasz, The interactions of water with epoxy resins, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, D.C. (1980).Google Scholar
  97. 97.
    J.N. BeMiller, as reported by M.A. Hill, Carbohvdr. Polym. 10:64 (1989).CrossRefGoogle Scholar
  98. 98.
    C.Y. Ma and V.R. Harwalkar, eds., “Thermal Analysis of Foods,” Elsevier Applied Science, London (1989).Google Scholar
  99. 99.
    S.S. Kelley, T.G. Rials, and W.G. Glasser, Relaxation behavior of the amorphous components of wood, J. Materials Sci. 22:617 (1987).CrossRefGoogle Scholar
  100. 100.
    C.A.J. Hoeve and M.B.J.A. Hoeve, The glass point of elastin as a function of diluent concentration, Organ. Coat. Plast. Chem. 39:441 (1978).Google Scholar
  101. 101.
    A.P. MacKenzie, Non-equilibrium freezing behavior of aqueous systems, Phil. Trans. Royal Soc. London B. 278:167 (1977).CrossRefGoogle Scholar
  102. 102.
    W.J. Sichina, Predicting mechanical performance and lifetime of polymeric materials, Amer. Lab. 20(1):42 (1988).Google Scholar
  103. 103.
    A.P. MacKenzie, Collapse during freeze drying — qualitative and quantitative aspects, in: “Freeze Drying and Advanced Food Technology,” S.A. Goldlith, L. Rey, and W.W. Rothmayr, eds., Academic Press, New York (1975).Google Scholar
  104. 104.
    E.C. To and J.M. Flink, “Collapse”, a structural transition in freeze dried carbohydrates. I.-III., J. Food Technol. 13:551 (1978).CrossRefGoogle Scholar
  105. 105.
    J.M. Flink, Structure and structure transitions in dried carbohydrate materials, in: “Physical Properties of Foods,” M. Peleg and E.B. Bagley, eds., AVI, Westport (1983).Google Scholar
  106. 106.
    M. Karel and J.M. Flink, Some recent developments in food dehydration research, In: “Advances in Drying,” A.S. Mujumdar, ed., Vol. 2, Hemisphere, Washington (1983).Google Scholar
  107. 107.
    M. Scandola, G. Ceccorulli, and M. Pizzoli, Water clusters in elastin, Int. J. Biol. Macromol. 3:147 (1981).CrossRefGoogle Scholar
  108. 108.
    J.E. Jolley, The microstructure of photographic gelatin binders, Photogr. Sci. Eng. 14:169 (1970).Google Scholar
  109. 109.
    J.R. Mitchell, The rheology of gels, J. Text. Stud. 11:315 (1980).CrossRefGoogle Scholar
  110. 110.
    S.W. Shalaby, Thermoplastic polymers, in: “Thermal Characterization of Polymeric Materials,” E.A. Turi, ed., Academic Press, Orlando (1981).Google Scholar
  111. 111.
    M. Richter, F. Schierbaum, S. Augustat, and K.D. Knoch, Method of producing starch hydrolysis products for use as food additives, U.S. patent 3,962,465 (1976).Google Scholar
  112. 112.
    M. Richter, F. Schierbaum, S. Augustat, and K.D. Knoch, Method of producing starch hydrolysis products for use as food additives, U.S. patent 3,986,890 (1976).Google Scholar
  113. 113.
    E.E. Braudo, E.M. Belavtseva, E.F. Titova, I.G. Plashchina, V.L. Krylov, V.B. Tolstoguzov, F.R. Schierbaum, and M. Richter, Struktur und eigenschaften von maltodextrin-hydrogelen, Starke 31:188 (1979).CrossRefGoogle Scholar
  114. 114.
    E.E. Braudo, I.G. Plashchina, and V.B. Tolstoguzov, Structural characterization of thermoreversible anionic polysaccharide gels by their elastoviscous properties, Carbohvdr. Polym, 4:23 (1984).CrossRefGoogle Scholar
  115. 115.
    P.V. Bulpin, A.N. Cutler, and I.C.M. Dea, Thermally-reversible gels from low DE maltodextrins, in: “Gums and Stabilizers for the Food Industry 2,” G.O. Phillips, D.J. Wedlock, and P.A. Williams, eds., Pergamon Press, Oxford (1984).Google Scholar
  116. 116.
    F. Reuther, G. Damaschun, C. Gernat, F. Schierbaum, B. Kettlitz, S. Radosta, and A. Nothnagel, Molecular gelation mechanism of maltodextrins investigated by wide-angle X-ray scattering, Coll. Polym. Sci. 262:643 (1984).CrossRefGoogle Scholar
  117. 117.
    J.M. Lenchin, P.C. Trubiano, and S. Hoffman, Converted starches for use as a fat-or oil-replacement in foodstuffs, U.S. patent 4,510,166 (1985).Google Scholar
  118. 118.
    M.J. Miles, V.J. Morris, and S.G. Ring, Gelation of amylose, Carbohydr. Res. 135:257 (1985).CrossRefGoogle Scholar
  119. 119.
    H.S. Ellis and S.G. Ring, A study of some factors influencing amylose gelation, Carbohydr. Polvm. 5:201 (1985).CrossRefGoogle Scholar
  120. 120.
    M.L. German, A.L. Blumenfeld, V.P. Yuryev, and V.B. Tolstoguzov, An NMR study of structure formation in maltodextrin systems, Carbohydr. Polym. 11:139 (1989).CrossRefGoogle Scholar
  121. 121.
    E. Mayer, Hyperquenching of water and dilute aqueous solutions into their glassy states: an approach to cryofixation. Cryo-Lett. 9:66 (1988).Google Scholar
  122. 122.
    T.S. Ellis, X. Jin, and F.E. Karasz, The water-induced plasticization behavior of semi-crystalline polyamides. Polym. Prepr. 25(2):197 (1984).Google Scholar
  123. 123.
    X. Jin, T.S. Ellis, and F.E. Karasz, The effect of crystallinity and crosslinking on the depression of the glass transition temperature in nylon 6 by water, J. Polym. Sci.: Polvm. Phys. Edn. 22:1701 (1984).CrossRefGoogle Scholar
  124. 124.
    R.F. Boyer, E. Baer, and A. Hiltner, Concerning gelation effects in atactic polystyrene solutions, Macromolecules 18:427 (1985).CrossRefGoogle Scholar
  125. 125.
    H.E. Bair, Thermal analysis of additives in polymers, in: “Thermal Characterization of Polymeric Materials,” E.A. Turi, ed., Academic Press, Orlando (1981).Google Scholar
  126. 126.
    F. Franks, Solute-water interactions: do polyhydroxy compounds alter the properties of water?. Cryobiol. 20:335 (1983).CrossRefGoogle Scholar
  127. 127.
    F. Franks, Bound water: fact and fiction. Cryo-Lett. 4:73 (1983).Google Scholar
  128. 128.
    T.P. Labuza, Water binding of humectants, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  129. 129.
    S. Wynne-Jones and J.M.V. Blanshard, Hydration studies of wheat starch, amylopectin, amylose gels and bread by proton magnetic resonance, Carbohydr. Polym. 6:289 (1986).CrossRefGoogle Scholar
  130. 130.
    D. French, Organization of starch granules, in: “Starch: Chemistry and Technology,” R.L. whistler, J.N. Bemiller, and E.F. Paschall, eds., 2nd edn., Academic Press, Orlando (1984).Google Scholar
  131. 131.
    A. Imberty and S. Perez, A revisit to the three-dimensional structure of B-type starch, Biopolymers 27:1205 (1988).CrossRefGoogle Scholar
  132. 132.
    H.W. Starkweather, Water in nylon, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).Google Scholar
  133. 133.
    S. Gaeta, A. Apicella, and H.B. Hopfenberg, Kinetics and equilibria associated with the absorption and desorption of water and lithium chloride in an ethylene-vinyl alcohol copolymer, J. Membrane Sci. 12:195 (1982).CrossRefGoogle Scholar
  134. 134.
    N.S. Murthy, M. Stamm, J.P. Sibilia, and S. Krimm, Structural changes accompanying hydration in nylon 6, Macromolecules 22:1261 (1989).CrossRefGoogle Scholar
  135. 135.
    T. Kuge and S. Kitamura, Annealing of starch granules warm water treatment and heat-moisture treatment, J. Jap. Soc. Starch Sci. 32:65 (1985).CrossRefGoogle Scholar
  136. 136.
    R.J. Aguerre, C. Suarez, and P.E. Viollaz, Swelling and pore structure in starchy materials, J. Food Engn. 9:71 (1989).CrossRefGoogle Scholar
  137. 137.
    B.O. Juliano, Properties of rice starch in relation to varietal differences in processing characteristics of rice grain, J. Jap. Soc. Starch Sci. 29:305 (1982).CrossRefGoogle Scholar
  138. 138.
    J. Lelievre, Theory of gelatinization in a starch-water-solute system. Polymer 17:854 (1976).CrossRefGoogle Scholar
  139. 139.
    F. Franks, Nucleation: a maligned and misunderstood concept. Cryo-Lett. 8:53 (1987).Google Scholar
  140. 140.
    J. Kuprianoff, Fundamental aspects of the dehydration of foodstuffs, in: “Conference on Fundamental Aspects of the Dehydration of Foodstuffs,” Society of Chemical Industry, Aberdeen (1958).Google Scholar
  141. 141.
    J. Biros, R.L. Madan, and J. Pouchly, Heat capacity of water-swollen polymers above and below 0°C, Collect. Czech. Chem. Commun. 44:3566 (1979).CrossRefGoogle Scholar
  142. 142.
    J. Pouchly, J. Biros, and S. Benes, Heat capacities of water-swollen hydrophilic polymers above and below 0°C, Makromol. Chem. 180:745 (1979).CrossRefGoogle Scholar
  143. 143.
    J. Pouchly, S. Benes, Z. Masa, and J. Biros, Sorption of water in hydrophilic polymers, Makromol. Chem. 183:1565 (1982).CrossRefGoogle Scholar
  144. 144.
    J. Pouchly and J. Biros, Comments on the interpretation of thermodynamic data on swollen hydrogels, Polym. Bull. 19:513 (1988).CrossRefGoogle Scholar
  145. 145.
    W. Derbyshire, Dynamics of water in heterogeneous systems with emphasis on subzero temperatures, In: “Water: A Comprehensive Treatise,” F. Franks, ed., Vol. 7, Plenum Press, New York (1982).Google Scholar
  146. 146.
    C.A.J. Hoeve, The structure of water in polymers, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).Google Scholar
  147. 147.
    H.G. Burghoff and W. Pusch, Thermodynamic state of water in cellulose acetate membranes, Polym. Engn. Sci. 20:305 (1980).CrossRefGoogle Scholar
  148. 148.
    S. Mashimo, S. Kuwabara, S. Yagihara, and K. Higasi, Dielectric relaxation time and structure of bound water in biological materials, J. Phvs. Chem. 91:6337 (1987).CrossRefGoogle Scholar
  149. 149.
    T.P. Labuza, Fiber’s water binding capacity, Cereal Foods World 34:566 (1989).Google Scholar
  150. 150.
    C.A. Angell, Perspective on the glass transition, J. Phys. Chem. Solids 49:863 (1988).CrossRefGoogle Scholar
  151. 151.
    G.E. Roberts and E.F.T. White, Relaxation processes in amorphous polymers, in: “The Physics of Glassy Polymers,” R.N. Haward, ed., Applied Science, London (1973).Google Scholar
  152. 152.
    G.P. Johari, A. Hallbrucker, and E. Mayer, Thermal behavior of several hyperquenched organic glasses, J. Phys. Chem. 93:2648 (1989).CrossRefGoogle Scholar
  153. 153.
    V.N. Morozov and S.G. Gevorkian, Low-temperature glass transition in proteins, Biopolymers 24:1785 (1985).CrossRefGoogle Scholar
  154. 154.
    R.K. Chan, K. Pathmanathan, and G.P. Johari, Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures, J. Phvs. Chem. 90:6358 (1986).CrossRefGoogle Scholar
  155. 155.
    S. Matsuoka, G. Williams, G.E. Johnson, E.W. Anderson, and T. Furukawa, Phenomenological relationship between dielectric relaxation and thermodynamic recovery processes near the glass transition, Macromolecules 18:2652 (1985).CrossRefGoogle Scholar
  156. 156.
    W. Borchard, W. Bremer, and A. Keese, State diagram of the water-gelatin system, Colloid Polym. Sci. 258:516 (1980).CrossRefGoogle Scholar
  157. 157.
    I. Tomka, J. Bohonek, A. Spuhler, and M. Ribeaud, Structure and formation of the gelatin gel, J. Photogr. Sci. 23:97 (1975).Google Scholar
  158. 158.
    I.V. Yannas, Collagen and gelatin in the solid state, J. Macromol. Sci. — Revs. Macromol. Chem. C7:49 (1972).CrossRefGoogle Scholar
  159. 159.
    J.A. Wesson, H. Takezoe, H. Yu, and S.P. Chen, Dye diffusion in swollen gels by forced Rayleigh scattering, J. Appl. Phys. 53:6513 (1982).CrossRefGoogle Scholar
  160. 160.
    R.E. Robertson, Segmental mobility in the equilibrium liquid below the glass transition, Macromolecules 18:953 (1985).CrossRefGoogle Scholar
  161. 161.
    S.Z.D. Cheng, Thermal characterization of macromolecules, J. Appl. Polym. Sci.: Appl. Polym. Symp. 43:315 (1989).Google Scholar
  162. 162.
    G.E. Johnson, H.E. Bair, S. Matsuoka, E.W. Anderson, and J.E. Scott, Water sorption and its effects on a polymer’s dielectric behavior, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).Google Scholar
  163. 163.
    F. Franks, Biophysics and biochemistry of low temperatures and freezing, in: “Effects of Low Temperatures on Biological Membranes,” G.J. Morris and A. Clarke, eds., Academic Press, London (1981).Google Scholar
  164. 164.
    U. Bengtzelius and A. Sjolander, Glass transitions in hard sphere and Lennard-Jones fluids, Conference on Dynamic Aspects of Structural Change in Liquids and Glasses, New York Acad. Sci., New York (1986).Google Scholar
  165. 165.
    C.R. Cantor and P.R. Schimmel, “Biophysical Chemistry: Part I The Conformation of Biological Macromolecules.” W.H. Freeman, San Francisco (1980).Google Scholar
  166. 166.
    K.E. Van Holde, “Physical Biochemistry,” Prentice-Hall, Englewood Cliffs, New Jersey (1971).Google Scholar
  167. 167.
    K. Hofer, A. Hallbrucker, E. Mayer, and G.P. Johari, Vitrified dilute aqueous solutions. 3. Plasticization of water’s H-bonded network and the glass transition temperature’s minimum, J. Phys. Chem. 93:4674 (1989).CrossRefGoogle Scholar
  168. 168.
    M.J. Pikal and S. Shah, The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase, Int. J. Pharm. in press (1990).Google Scholar
  169. 169.
    C.A. Angell, Supercooled water, Ann. Rev. Phys. Chem. 34:593 (1983).CrossRefGoogle Scholar
  170. 170.
    M.D. Baro, N. Clavaguera, S. Bordas, M.T. Clavaguera-Mora, and J. Casa-Vazquez, Evaluation of crystallization kinetics by DTA, J. Thermal Anal. 11:271 (1977).CrossRefGoogle Scholar
  171. 171.
    A.J. Phillips, R.J. Yarwood, and J.H. Collett, Thermal analysis of freeze-dried products, Anal. Proceed. 23:394 (1986).Google Scholar
  172. 172.
    A. Hiltner and E. Baer, Reversible gelation of macromolecular systems, Polym. Prepr. 27(1):207 (1986).Google Scholar
  173. 173.
    R.C. Domszy, R. Alamo, C.O. Edwards, and L. Mandelkern, Thermoreversible gelation and crystallization of homopolymers and copolymers, Macromolecules 19:310 (1986).CrossRefGoogle Scholar
  174. 174.
    L. Mandelkern, Thermoreversible gelation and crystallization from solution, Polvm. Prepr. 27(1): 206 (1986).Google Scholar
  175. 175.
    W. Burchard, Entanglement and reversible gelation for polymers of different architectures. Progr. Colloid Polym. Sci. 78:63 (1988).CrossRefGoogle Scholar
  176. 176.
    F.D. Blum and B. Nagara, Solvent mobility in gels of atactic polystyrene, Polym. Prepr. 27(1):211 (1986).Google Scholar
  177. 177.
    M.J. Tait, A. Suggett, F. Franks, S. Ablett, and P.A. Quiekenden, Hydration of monosaccharides: study by dielectric and NMR, J. Solution Chem. 1:131 (1972).CrossRefGoogle Scholar
  178. 178.
    F. Franks, D.S. Reid, and A. Suggett, Conformation and hydration of sugars and related compounds in dilute aqueous solution. J. Solution Chem. 2:99 (1973).CrossRefGoogle Scholar
  179. 179.
    A. Suggett and A.H. Clark, Molecular motion and interactions in aqueous carbohydrate solutions. I. dielectric relaxation studies, J. Solution Chem. 5:1 (1976).CrossRefGoogle Scholar
  180. 180.
    A. Suggett, S. Ablett, and P.J. Lillford, Molecular motion and interactions in aqueous carbohydrate solutions. II. NMR studies, J. Solution Chem. 5:17 (1976).CrossRefGoogle Scholar
  181. 181.
    A. Suggett, Molecular motion and interactions in aqueous carbohydrate solutions. III. a combined NMR and dielectric relaxation strategy. J. Solution Chem. 5:33 (1976).CrossRefGoogle Scholar
  182. 182.
    S.E. Keinath and R.F. Boyer, Thermomechanical analysis of Tg and T > Tg transitions in polystyrene, J. Appl. Polym. Sci. 26:2077 (1981).CrossRefGoogle Scholar
  183. 183.
    A.S. Marshall and S.E.B. Petrie, Thermal transitions in gelatin and aqueous gelatin solutions, J. Photogr. Sci. 28:128 (1980).Google Scholar
  184. 184.
    W.A. Atwell, L.F. Hood, D.R. Lineback, E. Varriano-Marston, and H.F. Zobel, Terminology and methodology associated with basic starch phenomena, Cereal Foods World 33:306 (1988).Google Scholar
  185. 185.
    A.H. Bloksma, Rheological aspects of structural changes during baking, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).Google Scholar
  186. 186.
    A.H. Bloksma and W. Bushuk, Rheology and chemistry of dough, in: “Wheat Science and Technology,” 3rd edn., Y. Pomeranz, ed., Vol. II, American Association of Cereal Chemists, St. Paul, Minn. (1988).Google Scholar
  187. 187.
    R.C. Hoseney, Component interaction during heating and storage of baked products, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).Google Scholar
  188. 188.
    S.G. Ring, Observations on crystallization of amylopectin from aqueous solution, Int. J. Biol. Macromol. 7:253 (1985).CrossRefGoogle Scholar
  189. 189.
    S.G. Ring, Studies on starch gelation, Starke 37:80 (1985).CrossRefGoogle Scholar
  190. 190.
    S.G. Ring and P.D. Orford, Recent observations on retrogradation of amylopectin, in: “Gums and Stabilizers for the Food Industry 3,” G.O. Phillips, D.J. Wedlock, and P.A. Williams, eds., Elsevier Applied Science, London (1986).Google Scholar
  191. 191.
    P.L. Russell, Aging of gels from starches of different amylose/amylopectin content studied by DSC, J. Cereal Sci. 6:147 (1987).CrossRefGoogle Scholar
  192. 192.
    K.J. l’Anson, M.J. Miles, V.J. Morris, S.G. Ring, and C. Nave, Study of amylose gelation using synchrotron X-Ray source, Carbohydr. Polym. 8:45 (1988).CrossRefGoogle Scholar
  193. 193.
    C. Mestres, P. Colonna, and A. Buleon, Gelation and crystallization of maize starch after pasting, drum-drying, or extrusion cooking, J. Cereal Sci. 7:123 (1988).CrossRefGoogle Scholar
  194. 194.
    M.J. Gidley and P.V. Bulpin, Aggregation of amylose in aqueous systems: the effect of chain length on phase behavior and aggregation kinetics, Macromolecules 22:341 (1989).CrossRefGoogle Scholar
  195. 195.
    A.H. Clark, M.J. Gidley, R.K. Richardson, and S.B. Ross-Murphy, Rheological studies of aqueous amylose gels: the effect of chain length and concentration on gel modulus, Macromolecules 22:346 (1989).CrossRefGoogle Scholar
  196. 196.
    M.J. Gidley, Molecular mechanisms underlying amylose aggregation and gelation, Macromolecules 22:351 (1989).CrossRefGoogle Scholar
  197. 197.
    M.J. Miles, V.J. Morris, P.D. Orford, and S.G. Ring, Roles of amylose and amylopectin in gelation and retrogradation of starch, Carbohydr. Res. 135:271 (1985).CrossRefGoogle Scholar
  198. 198.
    D.S. Reid and S. Charoenrein, DSC studies of starch-water interaction in gelatinization process, in: “Proceedings 14th NATAS Conference,” NATAS, San Francisco (1985).Google Scholar
  199. 199.
    A. Chungcharoen and D.B. Lund, Influence of solutes and water on rice starch gelatinization, Cereal Chem. 64:240 (1987).Google Scholar
  200. 200.
    B.C. Burros, L.A. Young, and P.A. Carroad, Kinetics of corn meal gelatinization at high temperature and low moisture, J. Food Sci. 52:1372 (1987).CrossRefGoogle Scholar
  201. 201.
    D. Paton, DSC of oat starch pastes. Cereal Chem. 64:394 (1987).Google Scholar
  202. 202.
    J.W. Donovan, Phase transitions of the starch-water system, Biopolymers 18:263 (1979).CrossRefGoogle Scholar
  203. 203.
    C.G. Biliaderis, T.J. Maurice, and J.R. Vose, Starch gelatinization phenomena studied by DSC, J. Food Sci. 45:1669 (1980).CrossRefGoogle Scholar
  204. 204.
    S.Z.D. Cheng and B. Wunderlich, Glass transition and melting behavior of poly(oxy-2,6-dimethyl-l,4-phenylene), Macromolecules 20:1630 (1987).CrossRefGoogle Scholar
  205. 205.
    J.M.V. Blanshard, Physicochemical aspects of starch gelatinization, in: “Polysaccharides in Food,” J.M.V. Blanshard and J.R. Mitchell, eds., Butterworths, London (1979).Google Scholar
  206. 206.
    D.B. Lund, Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization, CRC Crit. Rev. Food Sci. Nutr. 20:249 (1984).CrossRefGoogle Scholar
  207. 207.
    G.C. Alfonso and T.P. Russell, Kinetics of crystallization in semi-crystalline/amorphous polymer mixtures, Macromolecules 19:1143 (1986).CrossRefGoogle Scholar
  208. 208.
    T. Jankowski and C.K. Rha, Retrogradation of starch in cooked wheat, Starke 38:6 (1986).CrossRefGoogle Scholar
  209. 209.
    K. Kulp and J.G. Ponte, Staling of white pan bread: fundamental causes, CRC Crit. Revs. Food Sci. Nutr. 15:1 (1981).CrossRefGoogle Scholar
  210. 210.
    P.J. Flory and E.S. Weaver, Phase transitions in collagen and gelatin systems, J. Amer. Chem. Soc. 82:4518 (1960).CrossRefGoogle Scholar
  211. 211.
    F. Nakazawa, S. Noguchi, J. Takahashi, and M. Takada, Retrogradation of gelatinized potato starch studied by DSC, Agric. Biol. Chem. 49:953 (1985).CrossRefGoogle Scholar
  212. 212.
    M.J. Gidley, Factors affecting crystalline type of native starches and model materials, Carbohvdr. Res. 161:301 (1987).CrossRefGoogle Scholar
  213. 213.
    M.J. Gidley and P.V. Bulpin, Crystallization of maltaoses as models of the crystalline forms of starch, Carbohvdr. Res. 161:291 (1987).CrossRefGoogle Scholar
  214. 214.
    A. Guilbot and B. Godon, Le pain rassis, Cah. Nut. Diet. 19:171 (1984).Google Scholar
  215. 215.
    J.D. Ferry, Mechanical properties of substances of high molecular weight, J. Amer. Chem. Soc. 70:2244 (1948).CrossRefGoogle Scholar
  216. 216.
    W.M. Nicol, Sucrose and food technology, in: “Sugar: Science and Technology,” G.G. Birch and K.J. Parker, eds., Applied Science, London (1979).Google Scholar
  217. 217.
    T.G. Cooper, “The Tools of Biochemistry,” Wiley-Interscience, New York (1977).Google Scholar
  218. 218.
    K.J. Parker, The role of sucrose syrups in food manufacture, in: “Glucose Syrups and Related Carbohydrates,” G.G. Birch, L.F. Green, and C.B. Coulson, eds., Elsevier, Amsterdam (1970).Google Scholar
  219. 219.
    H. Weisser, Influence of temperature on sorption equilibria, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  220. 220.
    F. Franks, Physical chemistry of small carbohydrates equilibrium solution properties. Pure Appl. Chem. 59:1189 (1987).CrossRefGoogle Scholar
  221. 221.
    U. Matsukura, A. Matsunaga, and K. Kainuma, Contribution of amylose to starch retrogradation, J. Jpn. Soc. Starch Sci. 30:106 (1983).CrossRefGoogle Scholar
  222. 222.
    E.J. Welsh, J. Bailey, R. Chandarana, and W.E. Norris, Physical characterization of interchain association in starch systems, Prog. Fd. Nutr. Sci. 6:45 (1982).Google Scholar
  223. 223.
    P.A.M. Steeneken, Rheological properties of aqueous suspensions of swollen starch granules, Carbohvdr. Polym. 11:23 (1989).CrossRefGoogle Scholar
  224. 224.
    M.J. Gidley, P.V. Bulpin, and S. Kay, Effect of chain length on amylose retrogradation, In: “Gums and Stabilizers for the Food Industry 3,” G.O. Phillips, D.J. Wedlock, and P.A. Williams, eds., Elsevier Applied Science, London (1986).Google Scholar
  225. 225.
    R.L. Whistler and J.R. Daniel, Molecular structure of starch, in: “Starch: Chemistry and Technology,” 2nd edn., R.L. Whistler, J.N. BeMiller, and E.F. Paschall, eds., Academic Press, Orlando (1984).Google Scholar
  226. 226.
    A. Buleon, F. Duprat, F.P. Booy, and H. Chanzy, Single crystals of amylose with a low degree of polymerization, Carbohydr. Polym. 4:161 (1984).CrossRefGoogle Scholar
  227. 227.
    S. Hizukuri, Polymodal distribution of chain lengths of amylopectins and its significance. Carbohydr. Res. 147:342 (1986).CrossRefGoogle Scholar
  228. 228.
    H. Krusi and H. Neukom, Untersuchungen uber die retrogradation der starke in konzentrierten weizenstarkegelen, Starke 36:300 (1984).CrossRefGoogle Scholar
  229. 229.
    C.J. Durning and M. Tabor, Mutual diffusion in concentrated polymer solutions under small driving force, Macromolecules 19:2220 (1986).CrossRefGoogle Scholar
  230. 230.
    A.H. Muhr and J.M.V. Blanshard, Effect of polysaccharide stabilizers on the rate of growth of ice, J. Food Technol. 21:683 (1986).Google Scholar
  231. 231.
    H. Bizot, A. Buleon, N. Mouhoud-Riou, and J.L. Multon, Water vapor sorption hysteresis on potato starch, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  232. 232.
    F. Franks, Freeze drying: from empiricism to predictability. Cryo-Lett. 11:93 (1990).Google Scholar
  233. 233.
    P.L. Russell and G. Oliver, The effect of pH and NaCl content on starch gel aging. A study by DSC and rheology, J. Cereal Sci. 10:123 (1989).CrossRefGoogle Scholar
  234. 234.
    M. Karel, Role of water activity, in: “Food Properties and Computer-Aided Engineering of Food Processing Systems,” R.P. Singh and A.G. Medina, eds., Kluwer, Dordrecht (1989).Google Scholar
  235. 235.
    D.B. Lund, Starch gelatinization, in: “Food Properties and Computer-Aided Engineering of Food Processing Systems,” R.P. Singh and A.G. Medina, eds., Kluwer, Dordrecht (1989).Google Scholar
  236. 236.
    S. Radosta, F. Schierbaum, F. Reuther, and H. Anger, Polymer-water interaction of maltodextrins. Part I: water vapor sorption and desorption of maltodextrin powders, Starke 41:395 (1989).CrossRefGoogle Scholar
  237. 237.
    J.L. Doublier and L. Choplin, A rheological description of amylose gelation, Carbohydr. Res. 193:215 (1989).CrossRefGoogle Scholar
  238. 238.
    Y. Roos and M. Karel, Plasticizing effect of water on thermal behavior and crystallization of amorphous food models, J. Food Sci., in press (1990).Google Scholar
  239. 239.
    Y. Roos, Effect of moisture on the thermal behavior of strawberries studied using DSC. J. Food Sci. 52:146 (1987).CrossRefGoogle Scholar
  240. 240.
    K. Paakkonen and Y.H. Roos, Effects of drying conditions on water sorption and phase transitions of freeze-dried horseradish roots, J. Food Sci. 55:206 (1990).CrossRefGoogle Scholar
  241. 241.
    F. Franks and J.R. Grigera, Solution properties of low molecular weight polyhydroxy compounds, In: “Water Science Reviews-5: The Molecules of Life,” F. Franks, ed., Cambridge University Press, Cambridge (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Louise Slade
    • 1
  • Harry Levine
    • 1
  1. 1.Nabisco Brands, Inc.Fundamental Science GroupEast HanoverUSA

Personalised recommendations