Skip to main content

Molecular Dynamics of Water in Foods and Related Model Systems: Multinuclear Spin Relaxation Studies and Comparison with Theoretical Calculations

  • Chapter
Water Relationships in Foods

Abstract

A review of recent studies of molecular dynamics of water in foods and model systems is presented, and the theoretical results are compared with experimental data obtained by several techniques. Both theoretical and experimental approaches are discussed for electrolytes, carbohydrates, and food proteins in solution. Theoretical results from Monte Carlo simulations are compared with experimental NMR relaxation data for quadrupolar nuclei such as those of deuterium and oxygen-17.

Hydration studies of wheat, soybean, corn, and myofibrillar proteins by multinuclear spin relaxation techniques are discussed, and several new approaches to the analysis of the experimental data are considered. Correlation times of water motions in hydrated food systems are determined from NMR and dielectric relaxation data. The values of the correlation times for dilute solutions of electrolytes and carbohydrates estimated by NMR are in good agreement with those calculated from dielectric relaxation data, but seem to differ significantly from those proposed from Monte Carlo simulations. Several new and important results concerning the hydration of potato and cereal starches are presented, showing the very different hydration behaviors of these two major groups of starches. The combination of molecular dynamics computations with NMR relaxation techniques will hopefully stimulate novel technological developments in food engineering based on such fundamental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.V. Woodcock, Model of the instantaneous structure of a liquid, Nature 232:63 (1971).

    CAS  Google Scholar 

  2. S. Engstrom, B. Johnson, and B. Jonsson, A molecular approach to quadrupole relaxation. Monte Carlo simulations of dilute Li+, Na+ and Cl aqueous solutions, J. Magn. Reson. 50:1 (1982).

    Google Scholar 

  3. H.G. Hertz, Magnetic relaxation by quadrupole introduction of ionic nuclei in electrolyte solutions, Ber. Bunsenges. Phys. Chem. 77:531 and 688 (1973).

    CAS  Google Scholar 

  4. H. Holz, G. Keller, H. Hersmold, and C. Yoon, Nuclear magnetic relaxation of alkali metal ions in aqueous solutions, Ber. Bunsenges. Phys. Chem. 78:493 (1974).

    Google Scholar 

  5. K.A. Valiev and H. Khabibullin, Nuclear magnetic resonance and the structure of aqueous electrolyte solutions, Russ. J. Phys. Chem. 35:1118 (1961).

    Google Scholar 

  6. J.T. Hynes and P.G. Wolynes, A continuum theory for quadrupole relaxation of ions in solution, J. Chem. Phys. 75:395 (1981).

    Article  CAS  Google Scholar 

  7. C. Deverell, Nuclear magnetic shielding of hydrated alkali and halide ions in aqueous solutions. Mol. Phys. 16:491 (1969).

    Article  CAS  Google Scholar 

  8. C. Clement and H. Popkie, Study of the structure of molecular complexes. 1. Energy surface of a water molecule in the field of a lithium positive ion, J. Chem. Phys. 57:1077 (1972).

    Article  Google Scholar 

  9. R.M. Lawrence and R.F. Kruh, X-ray diffraction studies of aqueous alkali-metal halide solutions, J. Chem. Phys. 47:4758 (1967).

    Article  CAS  Google Scholar 

  10. A.H. Narten, F. Vaslow, and H.A. Levy, Diffraction pattern and structure of aqueous lithium chloride solutions, J. Chem. Phys. 58:5017 (1973).

    Article  CAS  Google Scholar 

  11. G. Licheri, G. Piccaluga, and G. Pinna, X-ray diffraction studies of LiCl solutions, J. Appl. Cryst. 6:392 (1973).

    Article  Google Scholar 

  12. J.E. Enderby and G.W. Neilson, Structure of ionic solutions, Phys. Bull. 29:360 (1978).

    CAS  Google Scholar 

  13. J.E. Enderby and G.W. Neilson, Neutron scattering studies of ionic solutions, Adv. Phys. 29:323 (1980).

    Article  CAS  Google Scholar 

  14. I.C. Baianu, N. Boden, and M. Mortimer, A new approach to the structure of concentrated aqueous electrolyte solutions using pulsed NMR methods, Chem. Phvs. Letts. 54:169 (1978).

    Article  CAS  Google Scholar 

  15. R.M. Sternheimer, On nuclear quadrupole moments, Phys. Rev. 84:244 (1951).

    Article  CAS  Google Scholar 

  16. K.D. Sen and P.T. Narashimhan, Polarizabilities and antishielding factors in crystals, in: “Advances in Nuclear Quadrupole Resonance,” Vol. 1, J.A.S. Smith, ed., Heyden, London (1974).

    Google Scholar 

  17. I.C. Baianu and T.F. Kumosinski, Comparisons of local structure in aqueous solutions and glasses of lithium chloride, Chem. Phys. Letts. submitted (1990).

    Google Scholar 

  18. T.F. Kumosinski, T. Lioutas, and I.C. Baianu, Multinuclear spin relaxation and molecular dynamics of concentrated electrolyte solutions, J. Magn. Reson. submitted (1990).

    Google Scholar 

  19. N. Boden and M. Mortimer, Reorientation of D2O in concentrated aqueous solutions of lithium chloride studied by nuclear magnetic relaxation, J. Chem. Soc. Faraday Trans. II 74:354 (1978).

    Article  Google Scholar 

  20. H.L. Friedman, Introduction to general discussion, Disc. Faraday Chem. Soc., Ion-Ion and Ion-Solvent Interactions, 401 (1977).

    Google Scholar 

  21. F. Franks, D.S. Reid, and A. Suggett, Conformation and hydration of sugars and related compounds in dilute aqueous solution, J. Solution Chem. 2:99 (1973).

    Article  CAS  Google Scholar 

  22. L. Slade and H. Levine, Non-equilibrium behavior of small carbohydratewater systems, Pure Appl. Chem. 60:1841 (1988).

    Article  CAS  Google Scholar 

  23. A. Mora and I.C. Baianu, Hydration studies of maltodextrins by proton, deuterium and oxygen-17 nuclear magnetic resonance, J. Food Sci. 55:462 (1990).

    Article  Google Scholar 

  24. A. Mora and I.C. Baianu, 1H NMR and viscosity measurements on suspensions of carbohydrates from corn: the investigation of carbohydrate hydration and stereochemical effects in solution. Relationship to oxygen-17 and carbon-13 NMR data, J. Agric. Food Chem. 37:1459 (1989).

    Article  Google Scholar 

  25. F. Reuther, G. Damaschun, Ch. Gernat, F. Schierbaum, B. Kettlitz, S. Radosta, and A. Nothnagel, Molecular gelation mechanism of maltodextrins investigated by wide-angle X-ray scattering, J. Colloid Polym. Sci. 262:643 (1984).

    Article  CAS  Google Scholar 

  26. P. Ahlstrom, O. Teleman, B. Jonsson, and S. Forsen, Molecular-dynamics simulation of parvalbumin in aqueous solution, J. Am. Chem. Soc. 109:1541 (1987).

    Article  Google Scholar 

  27. A. Kalk and H.J.C. Berendsen, Proton magnetic relaxation and spin diffusion in proteins, J. Magn. Reson. 24:343 (1976).

    CAS  Google Scholar 

  28. H.T. Edzes and E.T. Samulski, The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: hydrated collagen and muscle, J. Magn. Reson. 31:207 (1978).

    CAS  Google Scholar 

  29. D. Lankhorst and J.C. Leyte, NMR relaxation study of hydrogen exchange in solutions of polyelectrolytes, Macromolecules 17:93 (1984).

    Article  CAS  Google Scholar 

  30. L. Piculell and B. Halle, Water spin relaxation in colloidal systems. 2. 0-17 and H-2 relaxation in protein solutions, J. Chem. Soc. Faraday Trans. 82:401 (1986).

    Article  CAS  Google Scholar 

  31. L. Piculell and B. Halle, Water spin relaxation in colloidal systems. 1. 0-17 and H-2 relaxation in dispersions of colloidal silica, J. Chem. Soc. Faraday. Trans. 182:387 (1986).

    Google Scholar 

  32. L. Kakalis and I.C. Baianu, Oxygen-17 and deuterium nuclear magnetic relaxation studies of lysozyme hydration in solution: field dispersion, concentration, pH/pD and protein activity dependences, Arch. Biochem. Biophvs. 267:829 (1988).

    Article  CAS  Google Scholar 

  33. S.H. Koenig, K. Hallenga, and M. Shporer, Protein-water interaction studied by solvent 1H, 2H and 170 magnetic relaxation, Proc. Natl. Acad. Sci. USA 72:2667 (1975).

    Article  CAS  Google Scholar 

  34. J.R. Zimmerman and W.E. Brittin, Nuclear magnetic resonance studies in multiple phase systems: life-times of water molecules in an adsorbing phase on silica gel, J. Phys. Chem. 61:1328 (1957).

    Article  CAS  Google Scholar 

  35. E. Gratton, J.R. Alcala, and G. Marriott, Rotations of tryptophan residues in proteins, Biochem. Soc. Trans. 14:835 (1986).

    CAS  Google Scholar 

  36. T.S. Lioutas, I.C. Baianu, and M.P. Steinberg, Oxygen-17 and deuterium NMR studies of lysozyme hydration, Arch. Biochem. Biophys. 247:68 (1986).

    Article  CAS  Google Scholar 

  37. T.S. Lioutas, I.C. Baianu, and M.P. Steinberg, J. Agric. Food Chem. 35:133 (1987).

    Article  CAS  Google Scholar 

  38. I.C. Baianu, H.S. Gutowsky, and E. Oldfield, Origin and behavior of deuteron spin echoes in selectively labeled amino acids, myoglobin microcrystals and purple membranes, Biochem. 23:3105 (1984).

    Article  CAS  Google Scholar 

  39. E. Oldfield and T.M. Rothgeb, NMR of individual sites in protein crystals. Magnetic ordering effects, J. Amer. Chem. Soc. 102:3635 (1980).

    Article  CAS  Google Scholar 

  40. T.M. Rothgeb and E. Oldfield, Nuclear magnetic resonance of heme protein crystals, J. Biol. Chem. 256:1432 (1981).

    CAS  Google Scholar 

  41. A. Mora, I.C. Baianu and P.J. Bechtel, Self-association and hydration of myosin A and B derived from 170 NMR measurements and a thermodynamic linkage approach, Biophys. J. 57:418a (1989).

    Google Scholar 

  42. A. Mora, I.C. Baianu, and P.J. Bechtel, The effects of salts, pH and protein-protein interactions on myosin hydration and aggregation state as determined by 1H NMR: a thermodynamic linkage analysis, submitted (1990).

    Google Scholar 

  43. T.F. Kumosinski, The use of thermodynamic linkage to study the saltinduced solubility change of soybean isolate, J. Agric. Food Chem. 36:110 (1988).

    Article  Google Scholar 

  44. T.A. Lioutas, I.C. Baianu, P.J. Bechtel, and M.P. Steinberg, Oxygen-17 and sodium-23 nuclear magnetic resonance studies of myofibrillar protein interactions with water and electrolytes in relation to sorption isotherms, J. Agric. Food Chem. 36:437 (1988).

    Article  CAS  Google Scholar 

  45. W.F. Harrington and M.E. Rodgers, Myosin, Ann. Rev. Biochem. 53:35 (1984).

    Article  CAS  Google Scholar 

  46. C.H. Ernes and A.J. Rowe, Hydrodynamics studies of the self association of vertebrate skeletal muscle myosin, Biochem. Biophys. Acta. 537:110 (1978).

    Article  Google Scholar 

  47. I.C. Baianu, High-resolution NMR of food proteins, in: “NMR in Agriculture,” P. Pfeffer and W. Gerasimowics, eds., CRC Press, Boca Raton, Florida (1989).

    Google Scholar 

  48. I.C. Baianu et al., Multinuclear spin relaxation studies of food proteins, agriculturally-important materials and related model systems, in: “NMR in Agriculture and Food Chemistry,” J. Finley, ed., Plenum Press, New York (1990).

    Google Scholar 

  49. J.D. Schofield and I.C. Baianu, Solid-state, cross-polarization magic-angle spinning carbon-13 NMR and biochemical characterization of wheat proteins, Cereal Chem. 59:240 (1982).

    CAS  Google Scholar 

  50. I.C. Baianu and H. Förster, Cross-polarization, high-field carbon-13 NMR techniques for studying physicochemical properties of wheat grain, flour, starch, gluten and wheat protein powders, J. Appl. Biochem. 2:347 (1980).

    CAS  Google Scholar 

  51. I.C. Baianu, Carbon-13 and proton NMR studies of wheat proteins, J. Sci. Food Agric. 32:309 (1981).

    Article  CAS  Google Scholar 

  52. I.C. Baianu, L.F. Johnson, and D.K. Waddell, High-resolution, proton, carbon-13 and nitrogen-15 NMR studies of wheat proteins at high magnetic fields: spectral assignments, changes in conformation with heat treatments of Flinor gliadins in solution. Comparison with gluten spectra, J. Sci. Food Agric. 33:373 (1982).

    Article  CAS  Google Scholar 

  53. I.C. Baianu, C. Gabrielle and R. Sheppard, unpublished results.

    Google Scholar 

  54. H.K. Leung, J.A. Magnuson, and B.L. Bruinsraa, Water binding of wheat flour doughs and breads as studied by deuteron relaxation, J. Food Sci. 48:95 (1983).

    Article  CAS  Google Scholar 

  55. L-J. Lo, V.A. White, and P. Chinachotti, Effect of sucrose on water binding behavior of wheat gluten as determined by 2H, 170 and 13C NMR, J. Food Sci. in press (1990).

    Google Scholar 

  56. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Relation between oxygen-17 NMR and rheological characteristics of wheat flour suspensions, J. Food Sci. 50:1148 (1985).

    Article  Google Scholar 

  57. I.C. Baianu, Solid-state NMR of food proteins, in: “Proc. ACS Symp. Solid State NMR in Agriculture,” Washington, D.C. (1983).

    Google Scholar 

  58. A. Mora and I.C. Baianu, Ion binding and hydration of wheat gliadins in solution with a paramagnetic, Mn+2 ion probe, submitted (1990).

    Google Scholar 

  59. A. Mora and I.C. Baianu, Interactions of wheat gliadins in solutions with carbohydrates, submitted (1990).

    Google Scholar 

  60. M.E. Augustine and I.C. Baianu, Basic studies of corn proteins for improved solubility and future utilization: a physicochemical approach, J. Food Sci. 52:649 (1987).

    Article  CAS  Google Scholar 

  61. P.A. Myers-Betts and I.C. Baianu, 1H NMR relaxation studies of corn protein activity in aqueous solutions, in: “Proceed. — Conf. Biotechnol. Res. Dir. Biomolecules,” Argonne Natl. Lab., Chicago, IL (1988).

    Google Scholar 

  62. P.A. Myers-Betts and I.C. Baianu, Determination of virial coefficients of corn zeins in alkaline solutions form 1H NMR relaxation measurements, J. Agric. Food Chem. 38:477 (1990).

    Article  CAS  Google Scholar 

  63. M.E. Augustine and I.C. Baianu, High resolution carbon-13 NMR of maize proteins, J. Cereal Sci. 4:371 (1986).

    Article  CAS  Google Scholar 

  64. J. Wyman, Jr., Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19:223 (1964).

    Article  CAS  Google Scholar 

  65. H.M. Farrell and T.F. Kumosinski, Modeling of calcium-induced solubility profiles of casein for biotechnology: influence of primary structure and post-translational modification, J. Ind. Microbiol. 3:25 (1988).

    Article  Google Scholar 

  66. T.F. Kumosinski, The use of thermodynamic linkage and non-linear regression analysis for studying protein interactions, in: “Advances in Food and Nutrition Research,” J. Kinsella, ed. (1990).

    Google Scholar 

  67. W. Melander and C. Horvath, Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series, Arch. Biochem. Biophys. 183:200 (1977).

    Article  CAS  Google Scholar 

  68. J.L. Shen, Solubility and viscosity, fundamental physicochemical and functional properties of isolated soy proteins, in: “Protein Functionality in Foods,” J.P. Cherry, ed., ACS Symposium Series 147, American Chemical Society, Washington, D.C. (1981).

    Google Scholar 

  69. L. Kakalis, I.C. Baianu, and T.F. Kumosinski, Oxygen-17 and deuterium NMR studies of soy protein hydration, J. Agric. Food Chem. in press (1990).

    Google Scholar 

  70. L. Kakalis, I.C. Baianu, Carbon-13 NMR of soy glycinin in D2O, J. Agric. Food Chem. 37:1222 (1989).

    Article  CAS  Google Scholar 

  71. A. Mora, T.F. Kumosinski, I.C. Baianu, and P.J. Bechtel, Self-association of myofibrillar proteins as determined by oxygen-17 NMR, submitted (1990).

    Google Scholar 

  72. T.H. Lechert, Water binding on starch: nuclear magnetic resonance studies on native and gelatinized starch, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  73. P.H. Yakubu, I.C. Baianu, and P.H. Orr, Unique hydration properties of potato starch determined by deuterium NMR, J. Food Sci. 55:458 (1990).

    Article  CAS  Google Scholar 

  74. P.H. Yakubu, I.C. Baianu, and P.H. Orr, Deuterium NMR studies of potato starch hydration, in: this book.

    Google Scholar 

  75. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in corn starch suspensions determined by nuclear magnetic resonance, Starch 39:79 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baianu, I.C. et al. (1991). Molecular Dynamics of Water in Foods and Related Model Systems: Multinuclear Spin Relaxation Studies and Comparison with Theoretical Calculations. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics