Skip to main content

Use of NMR and MRI to Study Water Relations in Foods

  • Chapter
Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

Water is the most important component of a food system, because it influences so many process variables, product characteristics, and stability attributes. Some of the most successful techniques used to probe the behavior of water in food systems are Nuclear Magnetic Resonance (NMR) spectroscopy and, more recently, pulsed-field gradient NMR and Magnetic Resonance Imaging (MRI). The purpose of this chapter is to review the theory underlying these techniques and to present several examples of how they have been applied to study water relations in foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Fennema, Water and ice, in: “Food Chemistry,” O. Fennema, ed., 2nd edn., Marcel Dekker, New York (1985).

    Google Scholar 

  2. D. Eisenberg and W. Kauzman, “The Structure and Properties of Water,” Oxford University Press, New York (1970).

    Google Scholar 

  3. C.W. Kern and M. Karplus, The water molecule, in: “Water—A Comprehensive Treatise,” Vol. 1, F. Franks, ed., Plenum Press, New York (1972).

    Google Scholar 

  4. C.N.R. Rao, Theory of hydrogen bonding in water, in: “Water—A Comprehensive Treatise,” Vol. 1, F. Franks, ed., Plenum Press, New York (1972).

    Google Scholar 

  5. B.E. Conway, “Ionic Hydration in Chemistry and Biophysics,” Elsevier, New York (1981).

    Google Scholar 

  6. F. Franks, “Water,” The Royal Society of Chemistry, London (1984).

    Google Scholar 

  7. H. Nakano and T. Yasui, Denaturation of myosin-ATPase as a function of water activity, Agric. Biol. Chem. 40:107 (1976).

    Article  CAS  Google Scholar 

  8. T.P. Labuza and M. Saltmarch, The nonenzymatic browning reactions as affected by water in foods, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  9. J.L. Finney and P.L. Poole, Protein hydration and enzyme activity: The role of hydration-induced conformation and dynamic changes in the activity of lysozyme, Comments Mol. Cell. Biophys. 2:129 (1984).

    CAS  Google Scholar 

  10. R. Drapron, Enzyme activity as a function of water activity, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  11. G.E. Urbanski, Rheological properties of soybean and soybean-solute systems, Ph.D. Thesis, University of Illinois, Urbana, IL (1981).

    Google Scholar 

  12. J.R. Kirk, Influence of water activity on stability of vitamins in dehydrated foods, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  13. J. Ryley, The effect of water activity on the stability of vitamins, in: “Water and Food Quality,” T.M. Hardman, ed., Elsevier Applied Science, New York (1989).

    Google Scholar 

  14. E.E. Katz and T.P. Labuza, Effects of water activity on the sensory crispness and mechanical deformation of snack food products, J. Food Sci. 46:403 (1981).

    Article  Google Scholar 

  15. C. van den Berg and S. Bruin, Water activity and its estimation in food systems: Theoretical aspects, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  16. F. Franks, Water activity as a measure of biological viability and quality control. Cereal Foods World 27:403 (1982).

    CAS  Google Scholar 

  17. T.P. Labuza, “Moisture Sorption: Practical Aspects of Isotherm Measurement and Use,” American Association of Cereal Chemists, St. Paul, MN (1984).

    Google Scholar 

  18. S.G. Gilbert, New concepts on water activity and storage stability, in: “The Shelf Life of Foods and Beverages,” G. Charalambous, ed., Elsevier, Amsterdam (1986).

    Google Scholar 

  19. B. Makower and W.B. Dye, Equilibrium moisture content and crystallization of amorphous sucrose and glucose, J. Agric. Food Chem. 4:72 (1956).

    Article  CAS  Google Scholar 

  20. M. Karel, Physico-chemical modification of the state of water in foods — A speculative survey, in: “Water Relations of Foods,” R.B. Duckworth, ed., Academic Press, New York (1975).

    Google Scholar 

  21. J.M. Flink, Structure and structure transitions in dried carbohydrate materials, in: “Physical Properties of Foods,” M. Peleg and E.B. Bagley, eds., AVI, Westport, CT (1983).

    Google Scholar 

  22. J.G. Kapsalis, Moisture sorption hysteresis, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  23. L. Leistner and W. Rodel, The stability of intermediate moisture foods with respect to microorganism, in: “Intermediate Moisture Foods,” R. Davies, G.G. Birch, and K.J. Parker, eds., Applied Science, London (1976).

    Google Scholar 

  24. J.A. Troller, Effect of aw and pH on growth and survival of staphylococcus aureus, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  25. G.W. Gould and J.C. Measures, Water relations in single cells, Phil. Trans. R. Soc. London Ser. B 278:151 (1977).

    Article  CAS  Google Scholar 

  26. J.H.B. Christian, Specific solute effects on microbial/water relations, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  27. M.E. Fuller and W.S. Brey, Nuclear magnetic resonance study of water sorbed on serum albumin, J. Biol. Chem. 243:1968 (1968).

    Google Scholar 

  28. M.P. Steinberg and H. Leung, Some applications of wide-line and pulsed NMR investigations of water in foods, in: “Water Relations of Foods,” R.B. Duckworth, ed., Academic Press, New York (1975).

    Google Scholar 

  29. N. Nagashima and E. Suzuki, Studies of hydration by broad-line pulsed NMR, Appl. Spectroscopy Rev. 20:1 (1984).

    Article  Google Scholar 

  30. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in wheat flour suspensions as studied by proton and oxygen-17 nuclear magnetic resonance, J. Agric. Food Chem. 34:17 (1986).

    Article  CAS  Google Scholar 

  31. S.J. Richardson and M.P. Steinberg, Applications of nuclear magnetic resonance, in: “Water Activity: Theory and Applications to Foods,” L.B. Rockland and L.R. Beuchat, eds., Marcel Dekker, New York (1987).

    Google Scholar 

  32. A. Pande, “Handbook of Moisture Determination and Control: Principles, Techniques and Applications,” Vol. 2, Marcel Dekker, New York (1975).

    Google Scholar 

  33. M. Tomassetti, L. Campanella, M. Delfini, and T. Aureli, Determination of moisture in food flours. A comparative thermogravimetric and NMR study, Part 2, Thermochimica Acta 120:81 (1987).

    Article  CAS  Google Scholar 

  34. R.H. Walmsley and M. Shporer, Surface-induced NMR line splittings and augmented relaxation rates in water, J. Chem. Phys. 68:2584 (1978).

    Article  CAS  Google Scholar 

  35. B. Halle and H. Wennerstrom, Interpretation of magnetic resonance data from water nuclei in heterogeneous systems, J. Chem. Phys. 75:1928 (1981).

    Article  CAS  Google Scholar 

  36. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in starch powders by nuclear magnetic resonance, Starch 39:198 (1987).

    Article  CAS  Google Scholar 

  37. P.T. Callaghan, M.A. Le Gros, and D.N. Pinder, The measurement of diffusion using deuterium pulsed field gradient nuclear magnetic resonance, J. Chem. Phvs. 79:6372 (1983).

    Article  CAS  Google Scholar 

  38. P.T. Callaghan and J. Lelievre, The influence of polymer size and shape on self-diffusion of polysaccharides and solvents, Analytica Chimica Acta 189:145 (1986).

    Article  CAS  Google Scholar 

  39. J. Grandjean and P. Laszlo, Multinuclear and pulsed gradient magnetic resonance studies of sodium cations and of water reorientation at the interface of a clay, J. Magn. Reson. 83:128 (1989).

    CAS  Google Scholar 

  40. I.L. Pykett, J.H. Newhouse, F.S. Buonanno, T.J. Brady, M.R. Goldman, J.P. Kistler, and G.M. Pohost, Principles of nuclear magnetic resonance imaging, Radiology 143:157 (1982).

    CAS  Google Scholar 

  41. W.P. Rothwell, Nuclear magnetic resonance imaging, Applied Optics 24:3958 (1985).

    Article  CAS  Google Scholar 

  42. P.G. Morris, “Nuclear Magnetic Resonance: Imaging in Medicine and Biology,” Clarendon Press, Oxford (1986).

    Google Scholar 

  43. R.A. Assink, A. Caprihan, and E. Fukushima, Density profiles of a draining foam by nuclear magnetic resonance imaging, AICHE J. 34:2077 (1988).

    Article  CAS  Google Scholar 

  44. C.D. Eccles, P.T. Callaghan, and C.F. Jenner, Measurement of the self-diffusion coefficient of water as a function of position in wheat as grain using nuclear magnetic resonance imaging, Biophys. J. 53:77 (1988).

    Article  CAS  Google Scholar 

  45. E. Perez, R. Kavten, and M.J. McCarthy, Noninvasive measurement of moisture profiles during the drying of an apple, in: “Drying’ 89,” A.S. Mujumdar, ed., Hemisphere, New York (1989).

    Google Scholar 

  46. G. Gassner, Magnetic resonance imaging in agriculture, in: “Nuclear Magnetic Resonance in Agriculture,” P.E. Pfeffer and W.V. Gerasimowicz, eds., CRC Press, Boca Raton, FL (1989).

    Google Scholar 

  47. I.D. Campbell and R.A. Dwek, “Biological Spectroscopy,” Benjamin/Cummings, Menlo Park, CA (1984).

    Google Scholar 

  48. R.E. Richards and F. Franks, A discussion on water structure and transport in biology, Phil. Trans. R. Soc. Lond. B. 278:1 (1977).

    Google Scholar 

  49. R.G. Bryant, NMR relaxation studies of solute-solvent interactions, Ann. Rev. Phys. Chem. 29:167 (1978).

    Article  CAS  Google Scholar 

  50. R. Mathur-De Vrë, The NMR studies of water in biological systems, Prog. Biophvs. Molec. Biol. 35:103 (1979).

    Article  Google Scholar 

  51. H. Weisser, NMR-Techniques in studying bound water in foods, in: “Food Process Engineering, Vol. 1., Food Processing Systems,” P. Linko, Y. Milkki, J. Olkku, and J. Larinkari, eds., Applied Science, London (1980).

    Google Scholar 

  52. N. Nagashima and E. Suzuki, Pulsed NMR and state of water in foods, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  53. E.D. von Meerwall, Self-diffusion in polymer systems, measured with field-gradient spin-echo NMR methods, Advances in Polymer Sci. 54:1 (1983).

    Article  Google Scholar 

  54. E.D. von Meerwall, Pulsed and steady field gradient NMR diffusion measurements in polymers, Rubber Chem. Technol. 58:527 (1985).

    Article  Google Scholar 

  55. I. Horman, NMR spectroscopy, in: “Analysis of Foods and Beverages: Modern Techniques,” G. Charalambous, ed., Academic Press, New York (1984).

    Google Scholar 

  56. W. Saenger, Structure and dynamics of water surrounding biomolecules, Ann. Rev. Biophys. Chem. 16:93 (1987).

    Article  CAS  Google Scholar 

  57. P. Stilbs, Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Progress in NMR Spectroscopy 19:1 (1987).

    Article  CAS  Google Scholar 

  58. P.J. Lillford, The polymer/water relationship—its importance for food structure, in: “Food Structure—Its Creation and Evaluation,” J.M.V. Blanshard and J.R. Mitchell, eds., Butterworths, London (1988).

    Google Scholar 

  59. I.C. Baianu, High-resolution NMR studies of food proteins, in: “Nuclear Magnetic Resonance in Agriculture,” P.E. Pfeffer and W.V. Gerasimowicz, eds., CRC Press, Boca Raton, FL (1989).

    Google Scholar 

  60. T.F. Kumosinski and H. Pessen, Relaxation and cross-relaxation: NMR determination of water interactions with proteins, in: “Nuclear Magnetic Resonance in Agriculture,” P.E. Pfeffer and W.V. Gerasimowicz, eds., CRC Press, Boca Raton, FL (1989).

    Google Scholar 

  61. A. Abragam, “The Principles of Nuclear Magnetism,” Clarendon Press, Oxford (1961).

    Google Scholar 

  62. P. Laszlo, “NMR of Newly Accessible Nuclei,” Vol. 1, Academic Press, New York (1983).

    Google Scholar 

  63. W. Kemp, “NMR in Chemistry: A Multinuclear Introduction,” MacMillian Education, London (1986).

    Google Scholar 

  64. A.E. Derome, “Modern NMR Techniques for Chemistry Research,” Pergamon Press, New York (1987).

    Google Scholar 

  65. F.W. Wehrli, Principles of magnetic resonance, in: “Magnetic Resonance Imaging,” D.D. Stark and W.G. Bradley, eds., C.V. Mosby, St. Louis (1988).

    Google Scholar 

  66. L.J. Berliner and J. Reuben, “Biological Magnetic Resonance,” Plenum Press, New York (1980).

    Book  Google Scholar 

  67. M.L. Martin, J.J. Delpuech, and G.J. Martin, “Practical NMR Spectroscopy,” Heyden and Son, London (1980).

    Google Scholar 

  68. A. Kalk and H.J.C. Berendsen, Proton magnetic relaxation and spin diffusion in proteins, J. Magn. Reson. 24:343 (1976).

    CAS  Google Scholar 

  69. H. Edzes and E. Samulski, The measurement of cross-relaxation effects in proton NMR spin lattice relaxation of water in biological systems: Hydrated collagen and muscle, J. Magn. Reson. 31:207 (1978).

    CAS  Google Scholar 

  70. S.H. Koenig, R.G. Bryant, K. Hallenga, and G.S. Jacobs, Magnetic cross-relaxation among protons in protein solutions, Biochem. 17:4348 (1978).

    Article  CAS  Google Scholar 

  71. R.G. Bryant and W.M. Shirley, Dynamic deductions from nuclear magnetic resonance relaxation measurements at the water-protein interface, Biophvs. J. 32:3 (1980).

    Article  CAS  Google Scholar 

  72. G.D. Fullerton, J.L. Potter, and N.C. Dornbluth, NMR relaxation of protons in tissues and other macromolecular water solutions, Magn. Reson. Imaging 1:209 (1982).

    Article  CAS  Google Scholar 

  73. R.G. Bryant and M. Jarvis, Nuclear magnetic relaxation dispersions in protein solutions. A test of proton-exchange coupling, J. Phys. Chem. 88:1323 (1984).

    Article  CAS  Google Scholar 

  74. H. Peemoeller, D.W. Kydon, A.R. Sharp, and L.J. Schreiner, Crossrelaxation at the lysozyme-water interface: An NMR line-shape-relaxation correlation study, Can. J. Phvs. 62:1002 (1984).

    Article  CAS  Google Scholar 

  75. H. Peemoeller, F.G. Yeomans, D.W. Kydon, and A.R. Sharp, Water molecule dynamics in hydrated lysozyme: A deuteron magnetic resonance study, Biophys. J. 49:943 (1986).

    Article  CAS  Google Scholar 

  76. H. Pessen, J.M. Purcell, and H.M. Farrell, Proton relaxation ratio of water in dilute solutions of β-lactoglobulin. Determination of cross-relaxation and correlation with structural changes by the use of two genetic variants of a self-associating globular protein, Biochim. Biophvs. Acta 828:1 (1985).

    Article  CAS  Google Scholar 

  77. G.D. Fullerton, V.A. Ord, and I.L. Cameron, An evaluation of the hydration of lysozyme by an NMR titration method, Biochim. Biophys. Acta 869:230 (1986).

    Article  CAS  Google Scholar 

  78. H.E. Rorschach and C.F. Hazlewood, Protein dynamics and the NMR relaxation time T1 of water and biological systems, J. Magn. Reson. 70:79 (1986).

    CAS  Google Scholar 

  79. W.B. Wise and P.E. Pfeffer, Measurement of cross-relaxation effects in the proton NMR of water in fibrous collagen and insoluble elastin, Macromolecules 20:1550 (1987).

    Article  CAS  Google Scholar 

  80. J.C. Gore, M.S. Brown, J. Zhong, and I.M. Armitage, Prediction of proton relaxation rates from measurements of deuterium relaxation in aqueous systems, J. Magn. Reson. 83:246 (1989).

    CAS  Google Scholar 

  81. H.J.C. Berendsen, Specific interactions of water with biopolymers, in: “Water—A Comprehensive Treatise, Vol. 5, Water in Disperse Systems,” F. Franks, ed., Plenum Press, New York (1975).

    Google Scholar 

  82. B. Hale, T. Andersson, S. Forsen, and B. Lindman, Protein hydration from oxygen-17 magnetic relaxation, J. Am. Chem. Soc. 103:500 (1981).

    Article  Google Scholar 

  83. T.S. Lioutas, I.C. Baianu, and M.P. Steinberg, Oxygen-17 and deuterium nuclear magnetic resonance studies of lysozyme hydration, Archives Biochem. Biophvs. 247:136 (1986).

    Google Scholar 

  84. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in sucrose solutions determined by deuterium and oxygen-17 nuclear magnetic resonance measurements, J. Food Sci. 52:806 (1987).

    Article  CAS  Google Scholar 

  85. T.F. Kumosinski, H. Pessen, S.J. Prestrelski, and H.M. Farrell, Water interactions with varying molecular states of bovine casein: 2H NMR relaxation studies, Archives Biochem. Biophvs. 257:259 (1987).

    Article  CAS  Google Scholar 

  86. L. Van Dijk, M.L.H. Gruwel, W. Jesse, J. De Bleijser, and J.C. Leyte, Sodium ion and solvent nuclear relaxation results in aqueous solutions of DNA, Biopolvmers 26:261 (1987).

    Article  Google Scholar 

  87. L. Piculell, Water 17O and 2H spin relaxation in alkylammonium chloride micellar solutions, J. Phys. Chem. 89:3590 (1985).

    Article  CAS  Google Scholar 

  88. L. Piculell, Water spin relaxation in colloidal systems. Part 1. 17O and 2H relaxation in dispersions of colloidal silica. J. Chem. Soc. Faraday Trans. 1 82:387 (1986).

    Article  CAS  Google Scholar 

  89. L. Piculell and B. Halle, Water spin relaxation in colloidal systems. Part 2. 17O and 2H relaxation in protein solutions, J. Chem. Soc., Faraday Trans. 1 82:401 (1986).

    Article  CAS  Google Scholar 

  90. B. Halle and L. Piculell, Water spin relaxation in colloidal systems. Part 3. Interpretation of the low-frequency dispersion, J. Chem. Soc. Faraday Trans. 1 82:415 (1986).

    Article  CAS  Google Scholar 

  91. L.T. Kakalis and I.C. Baianu, Oxygen-17 and deuterium nuclear magnetic relaxation studies of lyzozyme hydration in solution: Field dispersion concentration, pH/pD, and protein activity dependence, Archives Biochem. Biophys. 267:829 (1988).

    Article  CAS  Google Scholar 

  92. G. Carlstrom and B. Halle, Water dynamics in microemulsion droplets. A nuclear spin relaxation study, Langmuir 4:1346 (1988).

    Article  Google Scholar 

  93. G. Carlstrom and B. Halle, Shape fluctuations and water diffusion in macroemulsion droplets. A nuclear spin relaxation study, J. Phys. Chem. 93:3287 (1989).

    Article  Google Scholar 

  94. H.H. Mantsch, H. Saito, and I.C.P. Smith, Deuterium magnetic resonance, applications in chemistry, physics and biology, Adv. NMR Spectra 11:211 (1977).

    Article  Google Scholar 

  95. C. Brevard and J.P. Kintzinger, Deuterium and tritium, in: “NMR and the Periodic Table,” R.K. Harris and B.E. Mann, eds., Academic Press, New York (1978).

    Google Scholar 

  96. R. Mathur-De Vrë, R. Grimëe-Declerck, and P. Lejeune, An NMR study of isotope distribution and state of water in the hydration layer of DNA, in: “Biophysics of Water,” F. Franks and S.F. Mathias, eds., John Wiley & Sons, New York (1982).

    Google Scholar 

  97. J.A. Glasel, Nuclear magnetic resonance studies on water and ice, in: “Water—A Comprehensive Treatise,” Vol. 1, F. Franks, ed., Plenum Press, New York (1972).

    Google Scholar 

  98. S. Meiboom, Nuclear magnetic resonance study of the proton transfer in water, J. Chem. Phys. 34:375 (1961).

    Article  CAS  Google Scholar 

  99. S.W. Rabideau and H.G. Hecht, Oxygen-17 linewidths as influenced by proton exchange in water, J. Chem. Phys. 47:544 (1967).

    Article  CAS  Google Scholar 

  100. J.P. Kintzinger and H. Marsmann, “Oxygen-17 and Silicon-29,” Springer-Verlag, New York (1981).

    Book  Google Scholar 

  101. B. Halle and G. Karlstrom, Prototropic charge migration in water. Part 1, J. Chem. Soc. Faraday Trans. 279:1031 (1983).

    Google Scholar 

  102. S.J. Richardson, Contribution of proton exchange to the oxygen-17 nuclear magnetic resonance transverse relaxation rate in water and starch-water systems, Cereal Chem. 66:244 (1989).

    CAS  Google Scholar 

  103. W.L. Earl and W. Niederberger, Proton decoupling in 17O nuclear magnetic resonance, J. Magn. Reson. 27:351 (1977).

    CAS  Google Scholar 

  104. S.J. Richardson Schmidt, Characterization of water in foods by NMR, in: “Applications of NMR in Biopolymers,” Plenum, New York (1990).

    Google Scholar 

  105. B.R. Garrett, A.B. Denison, and S.W. Rabideau, Oxygen-17 relaxation in water, J. Phys. Chem. 71:2606 (1967).

    Article  CAS  Google Scholar 

  106. T. St. Amour and D. Fiat, 17O magnetic resonance, Bulletin Magn. Reson. 1:118 (1980).

    CAS  Google Scholar 

  107. M.I. Burgar, Hydration role of water in biological systems, as determined by 0-17 NMR, Studia Biophvsica 91:29 (1982).

    CAS  Google Scholar 

  108. J.P. Kintzinger, Oxygen-17 NMR in: “NMR of Newly Accessible Nuclei,” Vol. 2, P. Laszlo, ed., Academic Press, New York (1983).

    Google Scholar 

  109. T.F. Kumosinski and H. Pessen, A deuteron and proton magnetic resonance relaxation study of β-lactoglobulin A association: Some approaches to Scatchard hydration of globular proteins, Arch. Biochem. Biophvs. 218:286 (1982).

    Article  CAS  Google Scholar 

  110. I.D. Kuntz and W. Kauzmann, Hydration of protein and polypeptides, Adv. Protein Chem. 28:239 (1974).

    Article  CAS  Google Scholar 

  111. J.L. Finney, J.M. Goodfellow, and P.L. Poole, The structure and dynamics of water in globular proteins, in: “Structural Molecular Biology — Methods and Applications,” D.B. Davies, W. Saenger, and S.S. Danyluk, eds., Plenum Press, New York (1982).

    Google Scholar 

  112. R. Cooke and I.D. Kuntz, The properties of water in biological systems, Ann. Rev. Biophys. Bioeng. 9035:95 (1974).

    Article  Google Scholar 

  113. W. Derbyshire, The dynamics of water in heterogenous systems with emphasis on subzero temperatures, in: “Water—A Comprehensive Treatise, Vol. 7, Water and Aqueous Solutions at Subzero Temperatures,” F. Franks, ed., Plenum Press, New York (1982).

    Google Scholar 

  114. D.R. Woodhouse, NMR in systems of biological significance, Ph.D. Thesis, University of Nottingham (1974).

    Google Scholar 

  115. H.M. Farrell, H. Pessen, and T.F. Kumosinski, Water interactions with varying molecular states of milk proteins: 2H NMR relaxation studies, 82nd Annual Meeting of the American Dairy Association, Paper #D116, Columbus, MO, June 21-24 (1987).

    Google Scholar 

  116. I.C. Baianu, personal communication (1989).

    Google Scholar 

  117. H.J. Hennig and H. Lechert, Nuclear magnetic resonance investigations and their application in food chemistry, in: “Application de la spectrometric de masse et de la resonance magnetique nucleaire dans les industries alimentaires,” XV Symposium International Bologna, 12-13 Nov., Commission Internationale des Industries Agricoles et Alimentaires (1975).

    Google Scholar 

  118. J.R. Hansen, Hydration of soybean protein, J. Agric. Food Chem. 24:1136 (1976).

    Article  CAS  Google Scholar 

  119. H.K. Leung, J.A. Magnuson, and B.L. Bruinsma, Pulsed nuclear magnetic resonance study of water mobility in flour doughs, J. Food Sci. 44:1408 (1979).

    Article  CAS  Google Scholar 

  120. H.K. Leung, J.A. Magnuson, and B.L. Bruinsma, Water binding of wheat flour doughs and breads as studied by deuteron relaxation, J. Food Sci. 48:95 (1983).

    Article  CAS  Google Scholar 

  121. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in starch-sucrose systems determined by deuterium and oxygen-17 nuclear magnetic resonance, Starch 39:302 (1987).

    Article  CAS  Google Scholar 

  122. H. Weisser, NMR spectroscopy in the food industry, in: “Brucker Minispec Application Note 7,” Institut für Lebensmittelverfahrenstechnik, Universität Karlsruhe, West Germany.

    Google Scholar 

  123. H. Nakano and T. Yasui, Pulsed nuclear magnetic resonance studies of water in myosin suspension during dehydration, Agric. Biol. Chem. 43:89 (1979).

    Article  CAS  Google Scholar 

  124. T. Yasui, M. Ishioroshi, H. Nakano, and K. Samejima, Changes in shear modulus ultrastructure and spin-spin relaxation times of water associated with heat-induced gelation of myosin, J. Food Sci. 441:1201 (1979).

    Article  Google Scholar 

  125. T.S. Lioutas, I.C. Baianu, P.J. Bechtel, and M.P. Steinberg, Oxygen-17 and sodium-23 nuclear magnetic resonance studies of myofibrillar protein interactions with water and electrolytes in relation to sorption isotherms, J. Agric. Food Chem. 36:437 (1988).

    Article  CAS  Google Scholar 

  126. A. Mora-Gutierrez, Hydration and activity studies of bovine skeletal muscle proteins and wheat gliadins by nuclear magnetic resonance, Ph.D. Thesis, University of Illinois, Urbana, IL (1989).

    Google Scholar 

  127. P.J. Lillford, A.H. Clark, and D.V. Jones, Distribution of water in heterogeneous food and model systems, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).

    Google Scholar 

  128. P.J. Lillford, D.V. Jones, and G.W. Rodger, Water in fish, in: “Advances in Fish Science and Technology,” J.J. Connell, ed., Fishing News Books, England (1980).

    Google Scholar 

  129. R.W. Currie, R. Jordan, and F.H. Wolfe, Changes in water structure in postmortem muscle, as determined by NMR T1 values, J. Food Sci. 46:822 (1981).

    Article  CAS  Google Scholar 

  130. T. Suzuki, State of water in sea food, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  131. G.R. Trout, Techniques for measuring water-binding capacity in muscle foods—A review of methodology, Meat Sci. 23:235 (1988).

    Article  CAS  Google Scholar 

  132. C. Migchelsen and H.J.C. Berendsen, Proton exchange and molecular orientation of water in hydrated collegen fibers. An NMR study of H2O and D2O, J. Chem. Phys. 59:296 (1973).

    Article  CAS  Google Scholar 

  133. C.A.J. Hoeve, The structure of water in polymers, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).

    Google Scholar 

  134. J.P. Renou, J. Alizon, M. Dohri, and H. Robert, Study of the water collagen system by NMR cross-relaxation experiments, J. Biochem. Biophys. Methods 7:91 (1983).

    Article  CAS  Google Scholar 

  135. J.R. Grigera and K.J. Bienkiewicz, Hydration of collagen. Support for the exchange model, Studia Biophysica 103:195 (1984).

    CAS  Google Scholar 

  136. J. Maquet, H. Theveneau, M. Djabourov, and P. Papon, 1H n.m.r. study of gelatin gels, Int. J. Biol. Macromol. 6:162 (1984).

    Article  CAS  Google Scholar 

  137. J. Maquet, H. Theveneau, M. Djabourov, J. Leblond, and P. Papon, State of water in gelatin solutions and gels: an 1H n.m.r. investigation, Polymers 27:1103 (1986).

    Article  CAS  Google Scholar 

  138. P. Lambelet, R. Berrocal, C. Desarzens, I. Froehlicher, and F. Ducret, Pulsed low-resolution NMR investigations of protein sols and gels, J. Food Sci. 53:943 (1988).

    Article  Google Scholar 

  139. S. Brunauer, P.H. Emmett, and E. Teller, Adsorption of gases in multi-molecular layers, J. Amer. Chem. Soc. 60:309 (1938).

    Article  CAS  Google Scholar 

  140. R.S. Bradley, Polymolecular adsorbed films. I. The adsorption of argon on salt crystals at low temperatures and the determination of surface fields, J. Chem. Soc. 1467 (1936).

    Google Scholar 

  141. R. Khan, D. Stehli, L.S. Wei, and M.P. Steinberg, Activity and mobility of water in sweetened whole soy concentrates and their rheological properties, J. Food Sci. 54:931 (1989).

    Article  CAS  Google Scholar 

  142. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Relation between oxygen-17 NMR and rheological characteristics of wheat flour suspensions, J. Food Sci. 50:1148 (1985).

    Article  Google Scholar 

  143. J. Fanni, D. Canet, K. Elbayed, and J. Hardy, 1H and 23Na NMR relaxation studies of the NaCl/β-lactoglobulin system equilibrated at various water activities, J. Food Sci. 54:909 (1989).

    Article  CAS  Google Scholar 

  144. S.P.F.M. Roefs, H. Van As, and T. Van Vliet, Pulse NMR of casein dispersions, J. Food Sci. 54:704 (1989).

    Article  CAS  Google Scholar 

  145. H.M. Farrell, H. Pessen, and T.F. Kumosinski, Water interactions with bovine caseins by hydrogen-2 nuclear magnetic resonance relaxation studies: Structural implications, J. Dairy Sci. 72:562 (1989).

    Article  CAS  Google Scholar 

  146. R. Brosio, G. Altobelli, S.Y. Yu, and A. Di Nola, A pulsed low-resolution NMR study of water binding to powdered milk, J. Fd. Technol. 18:219 (1983).

    Article  CAS  Google Scholar 

  147. E. Brosio, G. Altobelli, and A. Di Nola, A pulsed low-resolution NMR study of water binding to milk proteins, J. Fd. Technol. 19:103 (1984).

    Article  Google Scholar 

  148. J. Lelievre and L.K. Creamer, An NMR study of the formation and syneresis of renneted milk gels, Milchwissenschaft 33:73 (1978).

    Google Scholar 

  149. E.G. Samuelsson and B. Hueg, Nuclear magnetic resonance (NMR) as a method for measuring the rate of solution of dried milk, Milchwissenschaft 28:329 (1973).

    CAS  Google Scholar 

  150. H.K. Leung, M.P. Steinberg, L.S. Wei, and A.I. Nelson, Water binding of macromolecules determined by pulsed NMR, J. Food Sci. 41:297 (1976).

    Article  CAS  Google Scholar 

  151. K.W. Lang and M.P. Steinberg, Characterization of polymer and solute bound water by pulsed NMR, J. Food Sci. 48:517 (1983).

    Article  Google Scholar 

  152. T.L. James and K.T. Gillen, Nuclear magnetic resonance relaxation time and self-diffusion constant of water in hen egg white and yolk, Biochim. Biophys. Acta 286:10 (1972).

    Article  CAS  Google Scholar 

  153. S.M. Goldsmith and R.T. Toledo, Studies on egg albumin gelatin using nuclear magnetic resonance, J. Food Sci. 50:59 (1985).

    Article  Google Scholar 

  154. J.M. Harvey and M.C.R. Symons, Proton magnetic resonance study of the hydration of glucose, Nature 261:435 (1976).

    Article  CAS  Google Scholar 

  155. J.M. Harvey and M.C.R. Symons, The hydration of monosaccharides—An NMR study, J. Solution Chem. 7:571 (1978).

    Article  CAS  Google Scholar 

  156. S. Bociek and F. Franks, Proton exchange in aqueous solutions of glucose, J. Chem. Soc. Faraday Trans. 1 2:262 (1979).

    Article  Google Scholar 

  157. A. Mora-Gutierrez and I.C. Baianu, 1H NMR relaxation and viscosity measurements on solutions and suspensions of carbohydrates and starch from corn: The investigation of carbohydrate hydration and stereochemical and aggregation effects in relation to 17O and 13C NMR data for carbohydrate solutions, J. Agric. Food Chem. 37:1459 (1989).

    Article  CAS  Google Scholar 

  158. M.J. Tait, A. Suggett, F. Franks, S. Ablett, and P.A. Quiekenden, Hydration of monosaccharides: A study by dielectric and nuclear magnetic relaxation, J. Solution Chem. 1:131 (1972).

    Article  CAS  Google Scholar 

  159. A. Suggett, S. Ablett, and P.J. Lillford, Molecular motion and interactions in aqueous carbohydrate solutions. II. Nuclear-magnetic-relaxation studies, J. Solution Chem. 5:17 (1976).

    Article  CAS  Google Scholar 

  160. A. Suggett, Molecular motion and interactions in aqueous carbohydrate solutions. III. A combined nuclear magnetic and dielectric-relaxation strategy, J. Solution Chem. 5:33 (1976).

    Article  CAS  Google Scholar 

  161. G.W. Padua, Water states associated with skim milk components as determined by NMR, Ph.D. Thesis, University of Illinois, Urbana, IL (1989).

    Google Scholar 

  162. M.E. Augustine, S.J. Richardson, and C. Sullivan, The effects of the water mobility of selected sugar solutions on food starch functionality as measured by oxygen-17 NMR and Brabender Amylograph, International Conference, Agriculture and Food Chemistry Division of ACS, Sweetness: Carbohydrate and Low Calorie, Sept. 22–25, Los Angeles, CA (1988).

    Google Scholar 

  163. H.M. Lai and S.J. Schmidt, Water mobility and crystallization behavior of lactose-water systems as studied by oxygen-17 and carbon-13 NMR, J. Food Sci, in press (1989).

    Google Scholar 

  164. M.J. Tait, S. Ablett, and F. Franks, An NMR investigation of water in carbohydrate systems, in: “Water Structure at the Water-Polymer Interface,” H.H.G. Jellinik, ed., Plenum Press, New York (1972).

    Google Scholar 

  165. H. Lechert and H.J. Hennig, NMR investigations on the behavior of water in starches, in: “Magnetic Resonance in Colloid and Interface Science,” H.A. Resing and C.G. Wade, eds., ACS Symp. Ser. 34, American Chemical Society, Washington, DC (1976).

    Google Scholar 

  166. H. Lechert, W. Maiwald, R. Kothe, and W.D. Basler, NMR-study of water in some starches and vegetables, J. Food Proc. Preserv. 3:275 (1980).

    Article  Google Scholar 

  167. H. Lechert, Water binding on starch: NMR studies on native and gelatinized starch, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).

    Google Scholar 

  168. M.J. Tait, S. Ablett, and F.W. Wood, The binding of water on starch, an NMR investigation, J. Colloid Interface Sci. 41:594 (1972).

    Article  CAS  Google Scholar 

  169. H.J. Hennig and H. Lechert, Measurement of the magnetic relaxation times of the protons in native starches with different water contents, Starch 26:232 (1974).

    Article  CAS  Google Scholar 

  170. H.J. Hennig, NMR-investigations of the role of water for the structure of native starch granules, Starch 29:1 (1977).

    Article  CAS  Google Scholar 

  171. H.J. Hennig and H. Lechert, DMR study of D2O in native starches of different origins and amylose of type B, J. Colloid Interface Sci. 62:199 (1977).

    Article  CAS  Google Scholar 

  172. V.I. Schwier and H. Lechert, X-ray and nuclear magnetic resonance investigations on some structure problems of starch, Starch 34:11 (1982).

    Article  CAS  Google Scholar 

  173. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in corn starch suspensions determined by nuclear magnetic resonance, Starch 39:79 (1987).

    Article  CAS  Google Scholar 

  174. E. Jaska, Starch gelatinization as detected by proton magnetic resonance, Cereal Chem. 48:437 (1971).

    CAS  Google Scholar 

  175. J. Lelievre and J. Mitchell, A pulsed NMR study of some aspects of starch gelatinization, Starch 27:113 (1975).

    Article  CAS  Google Scholar 

  176. F. Nakazawa, J. Takahashi, S. Noguchi, and M. Kato, Water binding in gelatinized nonglutinous and glutinous rice starch determined by pulsed NMR, J. Home Econ. Japan 31:541 (1980).

    CAS  Google Scholar 

  177. P.T. Callaghan, K.W. Jolley, J. Lelievre, and R.B.K. Wong, Nuclear magnetic resonance studies of wheat starch pastes, J. Colloid Interface Sci. 92:332 (1983).

    Article  CAS  Google Scholar 

  178. F. Nakazawa, J. Takahashi, S. Noguchi, and M. Takada, Pulsed NMR study of water behavior in retrogradation process in rice and rice starch, J. Home Econ. Japan 34:566 (1983).

    CAS  Google Scholar 

  179. S.J. Richardson, Molecular mobilities of instant starch gels determined by oxygen-17 and carbon-13 nuclear magnetic resonance as affected by concentration and storage conditions, J. Food Sci. 53:1175 (1988).

    Article  CAS  Google Scholar 

  180. J.L. Jane, α-amylose action and 13C NMR studies on amylose-V complexes and retrograded amylose, Ph.D. Thesis, Iowa State University, Ames, IA (1985).

    Google Scholar 

  181. T. Brittain and R. Geddes, Water binding by glycogen molecules, Biochim. Biophvs. Acta 543:258 (1978).

    Article  CAS  Google Scholar 

  182. E. Hsi, G.F. Vogt, and R.G. Bryant, Nuclear magnetic resonance study of water adsorbed on cellulose, J. Colloid Interface Sci. 70:338 (1979).

    Article  CAS  Google Scholar 

  183. D.E. Woessner, B.S. Snowden, and Y.C. Chiu, Pulsed NMR study of the temperature hysteresis in the agar-water system, J. Colloid Interface Sci. 34:283 (1970).

    Article  CAS  Google Scholar 

  184. T.P. Labuza and G.C. Busk, An analysis of the water binding of gels, J. Food Sci. 44:1379 (1979).

    Article  CAS  Google Scholar 

  185. T.F. Child and N.G. Pryce, Steady-state and pulsed NMR studies of gelatin in aqueous agarose, Biopolymers 11:409 (1972).

    Article  CAS  Google Scholar 

  186. W. Derbyshire and I.D. Duff, NMR of agarose gels, Chem. Soc. Faraday Discuss. 57:243 (1973).

    Article  Google Scholar 

  187. S. Ablett, P.J. Lillford, S.M.A. Baghdahi, and W. Derbyshire, NMR relaxation in polysaccharide gels and films, in: “Magnetic Resonance in Colloid and Interface Science,” H.A. Resing and L.G. Wade, eds., ACS Symp. Ser. 34, American Chemical Society, Washington, DC (1976).

    Google Scholar 

  188. P.S. Belton, B.P. Hills, and E.R. Raimbaud, The effects of morphology and exchange of proton NMR relaxation in agarose gels, Mol. Phys. 63:825 (1988).

    Article  CAS  Google Scholar 

  189. M. Watase, K. Nishinari, A.H. Clark, and S.B. Ross-Murphy, Differential scanning calorimetry, rheology, X-ray and NMR of very concentrated agarose gels, Macromolecules 22:1196 (1989).

    Article  CAS  Google Scholar 

  190. N.M. Barfod, Calcium and water-binding activity during alginate gelation, in: “Gums and Stabilizers for the Food Industry,” G.O. Phillips, P.A. Williams, and D.J. Wedlock, eds., IRL Press, Oxford (1988).

    Google Scholar 

  191. A. Mora-Gutierrez and I.C. Baianu, Hydration studies of maltodextrins by proton, deuterium and oxygen-17 nuclear magnetic resonance, J. Food Sci. in press (1989).

    Google Scholar 

  192. P. Chinachoti and M.P. Steinberg, Correlation of proton T1 with polymer and solute waters in starch-sucrose mixtures, J. Food Sci. 54:691 (1989).

    Article  CAS  Google Scholar 

  193. H.S. Lim, D. Sobczynska, and C. Setser, 17O NMR studies on sucrose-wheat starch-water interactions with increasing temperature, 50th Ann. Meeting Institute Food Technologists, June 23–29, Chicago, IL (1989).

    Google Scholar 

  194. L.M. Hansen, J.V. Paukstelis, and C.S. Setser, 13C nuclear magnetic resonance spectroscopic methods for investigating sucrose-starch interactions with increasing temperature, Cereal Chem. 64:449 (1987).

    CAS  Google Scholar 

  195. I.D. Kuntz, Hydration of macromolecules. IV. Polypeptide conformation in frozen solutions, J. Amer. Chem. Soc. 93:516 (1971).

    Article  CAS  Google Scholar 

  196. L.J. Lynch and D.S. Webster, An investigation of the freezing of water associated with wool keratin by NMR methods, J. Colloid Interface Sci. 69:238 (1979).

    Article  CAS  Google Scholar 

  197. S. Katayama and S. Fujiwara, NMR study of the freezing/thawing mechanism of water in polyacrylamide gel, J. Phys. Chem. 84:2320 (1980).

    Article  CAS  Google Scholar 

  198. N. Nagashima and E. Suzuki, Computed instrumental analysis of the behavior of water in foods during freezing and thawing, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martin-us Nijhoff, Dordrecht (1985).

    Google Scholar 

  199. E. Suzuki and N. Nagashima, Freezing-thawing hysteresis phenomena of biological systems by the new method of proton magnetic resonance, Bull. Chem. Sci. Japan 55:2730 (1982).

    Article  CAS  Google Scholar 

  200. R.E. Hester and D.E.C. Quine, Quantitative analysis of food production by pulsed NMR. Rapid determination of oil and water in flour and feed-stuffs, J. Sci. Fd. Agric. 28:624 (1977).

    Article  CAS  Google Scholar 

  201. E. Brosio, F. Conti, A. Di Nola, O. Scorano, and F. Belestrieri, Simultaneous determination of oil and water content in olive husk by pulsed low resolution nuclear magnetic resonance, J. Fd. Technol. 16:629 (1981).

    Article  Google Scholar 

  202. E. Brosio, F. Conti, A. Di Nola, M. Scalzo, and E. Zulli, Oil and water determination in emulsions by pulsed low-resolution NMR, JAOCS 59:59 (1982).

    Article  CAS  Google Scholar 

  203. J.M. Shih, Determination of the oil and water content of rice by pulsed NMR, IBM Instruments, Danbury, CT (1983).

    Google Scholar 

  204. G. Ben-Et and D. Tatarsky, Application of NMR for the determination of HLB values of nonionic surfactants, JAOCS 49:499 (1972).

    Article  CAS  Google Scholar 

  205. J. Trumbetas, J.A. Fioriti, and R.J. Sims, Application of pulsed NMR to fatty emulsions, JAOCS 53:722 (1976).

    Article  CAS  Google Scholar 

  206. J. Trumbetas, J.A. Fioriti, and R.J. Sims, Nuclear magnetic resonance (NMR), JAOCS 54:433 (1977).

    Article  Google Scholar 

  207. J. Trumbetas, J.A. Fioriti, and R.J. Sims, Use of pulsed nuclear magnetic resonance to predict emulsion stability, JAOCS 55:248 (1978).

    Article  CAS  Google Scholar 

  208. N.M. Barfod, N. Krog, and W. Buchheim, Lipid-protein-emulsifier-water interactions in whippable emulsions, in: “Food Proteins. Part 1: Structure and Functional Relationships,” J. Kinsella and B. Soucie, eds., JAOCS in press (1989).

    Google Scholar 

  209. J.R. Hansen, High-resolution and pulsed nuclear magnetic resonance studies of microemulsions, J. Phys. Chem. 78:256 (1974).

    Article  CAS  Google Scholar 

  210. S. Arai and M. Watanabe, An enzymatically modified protein as a new surfactant and its function to interact with water and oil in an emulsion system, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  211. P. Quist and B. Halle, Water dynamics and aggregate structure in reversed micelles at sub-zero temperatures, J. Chem. Soc. Faraday Trans. 1 84:1033 (1988).

    Article  CAS  Google Scholar 

  212. T. Fujiwara, Y. Kobayaski, Y. Kyogoku, M. Kuwabara, M. Kodama, and S. Seki, Behavior of water molecules associated with the phase transitions in the binary system of dioctadecyldimethylainmonium chloride and water studied by proton and deuterium magnetic resonances, J. Colloid Interface Sci. 127:26 (1989).

    Article  CAS  Google Scholar 

  213. J.B. Nagy, I. Bodart-Ravet, E.G. Derouane, A. Gourgue, and J.P. Verfaillie, Multinuclear NMR characterization of CTAB-hexanol-water, sodium oleatebutanol-water and triton x-100-decanol-water microemulsions, Colloids and Surfaces 36:229 (1989).

    Article  CAS  Google Scholar 

  214. W. Rollwitz, Using radio frequency spectroscopy in agriculture applications, Agric. Engr. May:12 (1985).

    Google Scholar 

  215. J. Crank and G.S. Park, “Diffusion in Polymers,” 2nd edn., Academic Press, New York (1976).

    Google Scholar 

  216. F. O. Blum, Pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy. Spectroscopy 1:32 (1986).

    CAS  Google Scholar 

  217. K.R. Harris, R. Mills, P.J. Back, and D.J. Webster, An improved NMR spin-echo apparatus for the measurement of self-diffusion of water in aqueous electrolyte solutions, J. Magn. Reson. 29:473 (1978).

    Google Scholar 

  218. R.M. Cotts, M.J.R. Hoch, T. Sun, and J.T. Marker, Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems, J. Magn. Reson. 83:252 (1989).

    CAS  Google Scholar 

  219. K.J. Parker and F.O. Zelaya, Observations of diffusion of fields in porous solids by pulsed field gradient NMR, Colloids and Surfaces 36:221 (1989).

    Article  Google Scholar 

  220. T.L. James and G.G. McDonald, Measurements of the self-diffusion coefficient of each component in a complex system using pulsed-gradient fourier transform NMR, J. Magn. Reson. 11:58 (1973).

    CAS  Google Scholar 

  221. J. Karger, H. Pfeifer, and W. Heink, Principles and application of self diffusion measurements by nuclear magnetic resonance, in: “Advances in Magnetic Resonance,” Vol. 12, J.S. Waugh, ed., Academic Press, New York (1988).

    Google Scholar 

  222. D. Canet, B. Diter, A. Belmajdoub, J. Brondeau, J.C. Boubel, and K. Elbayed, Self-diffusion measurements using a radio frequency field gradient, J. Magn. Reson. 81:1 (1989).

    CAS  Google Scholar 

  223. H.T. Stokes, Study of diffusion in solids by pulsed nuclear magnetic resonance, in: “Nontraditional Methods of Diffusion,” G.E. Murch, H.K. Birnbaum, and J.R. Cost, eds., Metallurgical Society of the American Institute of Mining, Metallurgical, and Petroleum Engineers, New York (1984).

    Google Scholar 

  224. H.J.V. Tyrrell and K.R. Harris, “Diffusion in Liquids: A Theoretical and Experimental Study,” Butterworths, Boston, MA (1984).

    Google Scholar 

  225. E. von Meerwell and M. Kamat, Effect of residual field gradients on pulsed-gradient NMR diffusion measurements, J. Magn. Reson. 83:309 (1980).

    Google Scholar 

  226. B. Lindman, P. Stilbs, and M.E. Moseley, Fourier transform NMR self-diffusion and microemulsion structure, J. Colloid Interface Sci. 83:569 (1981).

    Article  CAS  Google Scholar 

  227. P.T. Callaghan, Pulsed field gradient nuclear magnetic resonance as a probe of liquid state molecular organization, Aust. J. Phys. 37:359 (1984).

    Article  CAS  Google Scholar 

  228. D.C. Chang, H.E. Rorscharch, B.L. Nichols, and C.F. Hazlewood, Implications of diffusion coefficient measurements for structure of cellular water, Annals N.Y. Acad. Sci. 204:434 (1973).

    Article  CAS  Google Scholar 

  229. R.L. Cooper, B. Chang, A.C. Young, C.J. Martin, and B. Aucker-Johnson, Restricted diffusion in biophysical systems, Biophys. J. 14:161 (1974).

    Article  CAS  Google Scholar 

  230. J. Grandjean and P. Laszlo, Multinuclear and pulsed gradient magnetic resonance studies of sodium cations and of water reorientation at the interface of a clay, J. Magn. Reson. 83:128 (1989).

    CAS  Google Scholar 

  231. P.T. Callaghan and K.W. Jolley, Diffusion of fat and water in cheese as studied by pulsed field gradient-nuclear magnetic resonance, J. Colloid Interface Sci. 93:521 (1983).

    Article  CAS  Google Scholar 

  232. C. Buttersack and W. Basler, Self-diffusion of water in sulfonic and ion exchange resins, J. Polymer Sci. Part B: Polymer Phys. 27:1551 (1989).

    Article  CAS  Google Scholar 

  233. M.T. Clarkson, D. Beaglehole, and P.T. Callaghan, Molecular diffusion in a microemulsion, Phvs. Rev. Lett. 54:1722 (1985).

    Article  CAS  Google Scholar 

  234. L. Cappola, C. La Mesa, G.A. Ranieri, and M. Terenzi, Water self-diffusion in micellar solution and in lyotropic mesophases of the system water/Triton TX-100, Colloid Polymer Sci. 267:86 (1989).

    Article  Google Scholar 

  235. E. von Meerwall and T. Stone, Network fraction and molecular motions in polymer composites: An NMR relaxation and self-diffusion study, J. Polymer Sci. Part B: Polymer Phys. 27:503 (1989).

    Article  Google Scholar 

  236. B. Nystrom, M.E. Moseley, W. Brown, and J. Roots, Molecular motion of small molecules in cellulose gels studied by NMR, J. Appl. Polym. Sci. 26:3385 (1981).

    Article  Google Scholar 

  237. W. Brown and P. Stilbs, Self-diffusion measurements in bovine serum albumin solutions and gels using a pulsed-gradient spin-echo NMR technique, Chemica Scripta 19:161 (1982).

    CAS  Google Scholar 

  238. V.W. Basier and H. Lechert, Diffusion of water in starch gels, Starch 26:39 (1974).

    Article  Google Scholar 

  239. P.T. Callaghan and J. Lelievre, The size and shape of amylopectin: A study using pulsed-field gradient nuclear magnetic resonance, Biopolymers 24:441 (1985).

    Article  CAS  Google Scholar 

  240. J.H. Wang, Theory of the self-diffusion of water in protein solutions. A new method for studying the hydration and shape of protein molecules, J. Amer. Chem. Soc. 76:4755 (1954).

    Article  CAS  Google Scholar 

  241. P.T. Callaghan, K.W. Jolley, and J. Lelievre, Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance, Biophys. J. 28:133 (1979).

    Article  CAS  Google Scholar 

  242. D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders, Radiology 161:401 (1986).

    Google Scholar 

  243. D. Le Bihan, E. Breton, D. Lallemand, M.L. Aubin, J. Vignaud, and M. Laval-Jeantet, Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging, Radiology 168:497 (1988).

    Google Scholar 

  244. S. Blackband and P. Mansfield, Diffusion in liquid-solid systems by NMR imaging, J. Phvs. C: Solid State Phvs. 19:49 (1986).

    Article  Google Scholar 

  245. K.D. Merholdt, W. Hanicke, M.L. Gyngell, J. Frahn, and H. Bruhn, Rapid NMR imaging of molecular self-diffusion using a modified CE-FAST sequence, J. Magn. Reson. 82:115 (1989).

    Google Scholar 

  246. P.C. Lauterbur, Image formation by induced local interactions: Examples employing nuclear magnetic resonance, Nature 242:190 (1973).

    Article  CAS  Google Scholar 

  247. P. Mansfield and A.A. Maudsley, Medical imaging by NMR, J. Br. Radiol. 50:188 (1977).

    Article  CAS  Google Scholar 

  248. P. Mansfield and P.C. Morris, NMR imaging in biomedicine, in: “Advances in Magnetic Resonance,” Suppl. 2, J.S. Waugh, ed., Academic Press, New York (1982).

    Google Scholar 

  249. I.L. Pykett, NMR imaging in medicine, Scientific American 246:78 (1982).

    Article  CAS  Google Scholar 

  250. T.F. Budinger and P.C. Lauterbur, Nuclear magnetic resonance technology for medical studies, Science 226:288 (1984).

    Article  CAS  Google Scholar 

  251. J.P. Heiken, H.S. Glazer, J.K.T. Lee, W.A. Murphy, and M. Gado, “Manual of Clinical Magnetic Resonance Imaging,” Raven Press, New York (1986).

    Google Scholar 

  252. M.A. Foster and J.M.S. Hutchison, “Practical NMR Imaging,” IRL Press, Washington, DC (1987).

    Google Scholar 

  253. R.K. Lambert, R.J. Pack, Y. Xia, C.D. Eccles, and P.T. Callaghan, In vitro tracheal mechanics by nuclear magnetic resonance imaging, J. Appl. Physiol. 65:1872 (1988).

    CAS  Google Scholar 

  254. D.D. Stark and W.G. Bradley, “Magnetic Resonance Imaging,” C.V. Mosby, St. Louis, MO (1988).

    Google Scholar 

  255. F.W. Wehrli, D. Shaw, and J.B. Kneeland, “Biomedical Magnetic Resonance Imaging,” VCH, New York (1988).

    Google Scholar 

  256. D.M. Kramer, Imaging of elements other than hydrogen, in: “Nuclear Magnetic Resonance Imaging in Medicine,” L. Kaufman, L.E. Crooks, and A.R. Margulis, eds., Igaku-Shoin, New York (1981).

    Google Scholar 

  257. G.D. Mateescu, G.M. Uvars, and T. Dular, Water, ions and 0–17 magnetic resonance imaging, in: “Water and Ions in Biological Systems,” P. Lauger, L. Packer, and V. Sasilescu, eds., Birkhauser Verlag, Basel (1988).

    Google Scholar 

  258. G.D. Mateescu, G.M. Uvars, D.I. Pazara, N.A. Alldridge, J.C. La Manna, W.D. Lust, M. Mattingly, and W. Kuhn, Combined 170/1H magnetic resonance microscopy in plants, animals and materials: Present status and potential, in: “Synthesis and Applications of Isotopically Labelled Compounds,” T.A. Baillie and J.R. Jones, eds., Elsevier, Amsterdam (1989).

    Google Scholar 

  259. H. Lee and C. Potter, personal communication (1989).

    Google Scholar 

  260. H. Song and J.B. Litchfield, personal communication (1989).

    Google Scholar 

  261. P. Brunner and R.R. Ernst, Sensitivity and performance time in NMR imaging, J. Magn. Reson. 33:83 (1979).

    CAS  Google Scholar 

  262. P. Sprawls, Spatial characteristics of the MR image, in: “Magnetic Resonance Imaging,” C.V. Mosby, St. Louis, MO (1988).

    Google Scholar 

  263. L.W. Jelinski, R.W. Behling, H.K. Tubbs, and M.D. Cockman, NMR imaging: From whole bodies to single cells, Amer. Biotechnol. Lab. 7:34 (1989).

    Google Scholar 

  264. J.M. Listerud, S.W. Sinton, and G.P. Drobny, NMR imaging of materials, Anal. Chem. 61:23A (1988).

    Article  Google Scholar 

  265. J.B. Aguayo, S.J. Blackband, J. Schoeniger, M.A. Mattingly, and M. Hintermann, Nuclear magnetic resonance imaging of a single cell, Nature 322:190 (1986).

    Article  CAS  Google Scholar 

  266. L.D. Hall and T.J. Norwood, Zero-quantum-coherence, chemical-shift-resolved imaging in an inhomogeneous magnetic field, J. Magn. Reson. 67:382 (1986).

    CAS  Google Scholar 

  267. C.D. Eccles and P.T. Callaghan, High-resolution imaging. The NMR microscope, J. Magn. Reson. 68:393 (1986).

    CAS  Google Scholar 

  268. C.F. Jenner, Y. Xia, C.D. Eccles, and P.T. Callaghan, Circulation of water within wheat grain revealed by nuclear magnetic resonance micro-imaging, Nature 336:399 (1988).

    Article  Google Scholar 

  269. G.P. Cofer, J.M. Brown, and G.A. Johnson, In vivo magnetic resonance microscopy at 5 μm, J. Magn. Reson. 83:608 (1989).

    CAS  Google Scholar 

  270. B.H. Suits and D. White, NMR imaging in solids, Solid State Communications 50:291 (1984).

    Article  CAS  Google Scholar 

  271. N.M. Szevernyi and G.E. Maciel, NMR spin imaging of magnetically dilute nuclei in the solid state, J. Magn. Reson. 60:460 (1984).

    Google Scholar 

  272. F. De Luca, B.C. De Simone, B. Maraviglia, and C. Nuccetelli, NMR imaging new strategies: Magic angle imaging, Bull. Magn. Reson. 8:102 (1986).

    Google Scholar 

  273. W.P. Rothwell and H.J. Vinegar, Petrophysical applications of NMR imaging, Applied Optics 24:3969 (1985).

    Article  CAS  Google Scholar 

  274. H.J. Vinegar, X-ray CT and NMR imaging of rocks, J. Petroleum Technology March:257 (1986).

    Google Scholar 

  275. W.P. Rothwell, D.R. Holecek, and J.A. Kershaw, NMR imaging: Study of fluid absorption by polymer composites, J. Polymer Sci.: Polymer Letters Edition 22:241 (1984).

    Article  CAS  Google Scholar 

  276. R.S. Menon, A.L. MacKay, S. Flibotte, and J.R.T. Hailey, Quantitative separation of NMR images of water in wood on the basis of T2, J. Magn. Reson. 82:205 (1989).

    CAS  Google Scholar 

  277. H. Song and J.B. Litchfield, Nondestructive measurement of transient moisture profiles in corn during drying using NMR imaging, ASAE Meeting, Paper no. 88-6532, St. Joseph, MO (1988).

    Google Scholar 

  278. A.M. Kraynik, Foam Drainage, Sandia Report SAND83-0844 (1983).

    Google Scholar 

  279. M.J. McCarthy, K.L. McCarthy, J.B. German, and M. Winkler, Foam and emulsion stability: Measurements by magnetic resonance imaging, Proceedings 5th International Congress Engineering and Food, Cologne, Federal Republic of Germany, May 28–June 3 (1989).

    Google Scholar 

  280. J.B. German and M.J. McCarthy, Stability of aqueous foams: Analysis using magnetic resonance imaging, J. Agric. Food Chem. 37:1321 (1989).

    Article  CAS  Google Scholar 

  281. M.J. McCarthy and E. Perez, Measurement of effective moisture diffuivities using magnetic resonance imaging, Proceedings 5th International Congress Engineering and Food, Cologne, Federal Republic of Germany, May 28–June 3 (1989).

    Google Scholar 

  282. R. Ruan, S.J. Schmidt, A.R. Schmidt, and J.B. Litchfield, Nondestructive measurement of transient moisture profiles and the moisture diffusion coefficient in a potato during drying and absorption by NMR imaging, AICHE Summer National Meeting, Magnetic Resonance Imaging of Foods, Session 10, Philadelphia, PA (1989).

    Google Scholar 

  283. T.W. Redpath, D.G. Norris, R.A. Jones, and J.M.S. Hutchinson, A new method of NMR flow imaging, Phys. Med. Biol. 29:891 (1984).

    Article  CAS  Google Scholar 

  284. K. Kose, K. Satoh, T. Inovye, and H. Yasuoka, NMR flow imaging, J. Phvs. Soc. Japan 54:81 (1985).

    Article  Google Scholar 

  285. M. O’Connell, NMR blood flow imaging using multi-echo phase contrast sequences, Med. Phys. 12:59 (1985).

    Article  Google Scholar 

  286. F.H. Cho, C.H. Oh, Y.S. Kim, C.W. Mun, O. Nalcioglua, S.J. Lee, and M.K. Chung, A new nuclear magnetic resonance imaging technique for unambiquous unidirectional measurement of flow velocity, J. Appl. Phys. 60:1256 (1986).

    Article  Google Scholar 

  287. J.P. Ridgeway and M.A. Smith, A technique for velocity imaging using magnetic resonance imaging, Br. J. Radiol. 59:603 (1986).

    Article  Google Scholar 

  288. P.T. Callaghan, C.D. Eccles, and Y. Xia, NMR microscopy of dynamic displacements: k-space and q-space imaging, J. Phys. E: Sci. Instrum. 21:820 (1988).

    Article  CAS  Google Scholar 

  289. R.A. Meyer and T.R. Brown, Diffusion measurements by microscopic NMR imaging, J. Magn. Reson. 76:393 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, S.J., Lai, HM. (1991). Use of NMR and MRI to Study Water Relations in Foods. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics