Advertisement

Use of NMR and MRI to Study Water Relations in Foods

  • Shelly J. Schmidt
  • Hsi-Mei Lai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)

Abstract

Water is the most important component of a food system, because it influences so many process variables, product characteristics, and stability attributes. Some of the most successful techniques used to probe the behavior of water in food systems are Nuclear Magnetic Resonance (NMR) spectroscopy and, more recently, pulsed-field gradient NMR and Magnetic Resonance Imaging (MRI). The purpose of this chapter is to review the theory underlying these techniques and to present several examples of how they have been applied to study water relations in foods.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Nuclear Magnetic Resonance Data Nuclear Magnetic Reso Imaging Nuclear Magnetic Resonance Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Fennema, Water and ice, in: “Food Chemistry,” O. Fennema, ed., 2nd edn., Marcel Dekker, New York (1985).Google Scholar
  2. 2.
    D. Eisenberg and W. Kauzman, “The Structure and Properties of Water,” Oxford University Press, New York (1970).Google Scholar
  3. 3.
    C.W. Kern and M. Karplus, The water molecule, in: “Water—A Comprehensive Treatise,” Vol. 1, F. Franks, ed., Plenum Press, New York (1972).Google Scholar
  4. 4.
    C.N.R. Rao, Theory of hydrogen bonding in water, in: “Water—A Comprehensive Treatise,” Vol. 1, F. Franks, ed., Plenum Press, New York (1972).Google Scholar
  5. 5.
    B.E. Conway, “Ionic Hydration in Chemistry and Biophysics,” Elsevier, New York (1981).Google Scholar
  6. 6.
    F. Franks, “Water,” The Royal Society of Chemistry, London (1984).Google Scholar
  7. 7.
    H. Nakano and T. Yasui, Denaturation of myosin-ATPase as a function of water activity, Agric. Biol. Chem. 40:107 (1976).CrossRefGoogle Scholar
  8. 8.
    T.P. Labuza and M. Saltmarch, The nonenzymatic browning reactions as affected by water in foods, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  9. 9.
    J.L. Finney and P.L. Poole, Protein hydration and enzyme activity: The role of hydration-induced conformation and dynamic changes in the activity of lysozyme, Comments Mol. Cell. Biophys. 2:129 (1984).Google Scholar
  10. 10.
    R. Drapron, Enzyme activity as a function of water activity, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  11. 11.
    G.E. Urbanski, Rheological properties of soybean and soybean-solute systems, Ph.D. Thesis, University of Illinois, Urbana, IL (1981).Google Scholar
  12. 12.
    J.R. Kirk, Influence of water activity on stability of vitamins in dehydrated foods, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  13. 13.
    J. Ryley, The effect of water activity on the stability of vitamins, in: “Water and Food Quality,” T.M. Hardman, ed., Elsevier Applied Science, New York (1989).Google Scholar
  14. 14.
    E.E. Katz and T.P. Labuza, Effects of water activity on the sensory crispness and mechanical deformation of snack food products, J. Food Sci. 46:403 (1981).CrossRefGoogle Scholar
  15. 15.
    C. van den Berg and S. Bruin, Water activity and its estimation in food systems: Theoretical aspects, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  16. 16.
    F. Franks, Water activity as a measure of biological viability and quality control. Cereal Foods World 27:403 (1982).Google Scholar
  17. 17.
    T.P. Labuza, “Moisture Sorption: Practical Aspects of Isotherm Measurement and Use,” American Association of Cereal Chemists, St. Paul, MN (1984).Google Scholar
  18. 18.
    S.G. Gilbert, New concepts on water activity and storage stability, in: “The Shelf Life of Foods and Beverages,” G. Charalambous, ed., Elsevier, Amsterdam (1986).Google Scholar
  19. 19.
    B. Makower and W.B. Dye, Equilibrium moisture content and crystallization of amorphous sucrose and glucose, J. Agric. Food Chem. 4:72 (1956).CrossRefGoogle Scholar
  20. 20.
    M. Karel, Physico-chemical modification of the state of water in foods — A speculative survey, in: “Water Relations of Foods,” R.B. Duckworth, ed., Academic Press, New York (1975).Google Scholar
  21. 21.
    J.M. Flink, Structure and structure transitions in dried carbohydrate materials, in: “Physical Properties of Foods,” M. Peleg and E.B. Bagley, eds., AVI, Westport, CT (1983).Google Scholar
  22. 22.
    J.G. Kapsalis, Moisture sorption hysteresis, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  23. 23.
    L. Leistner and W. Rodel, The stability of intermediate moisture foods with respect to microorganism, in: “Intermediate Moisture Foods,” R. Davies, G.G. Birch, and K.J. Parker, eds., Applied Science, London (1976).Google Scholar
  24. 24.
    J.A. Troller, Effect of aw and pH on growth and survival of staphylococcus aureus, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  25. 25.
    G.W. Gould and J.C. Measures, Water relations in single cells, Phil. Trans. R. Soc. London Ser. B 278:151 (1977).CrossRefGoogle Scholar
  26. 26.
    J.H.B. Christian, Specific solute effects on microbial/water relations, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  27. 27.
    M.E. Fuller and W.S. Brey, Nuclear magnetic resonance study of water sorbed on serum albumin, J. Biol. Chem. 243:1968 (1968).Google Scholar
  28. 28.
    M.P. Steinberg and H. Leung, Some applications of wide-line and pulsed NMR investigations of water in foods, in: “Water Relations of Foods,” R.B. Duckworth, ed., Academic Press, New York (1975).Google Scholar
  29. 29.
    N. Nagashima and E. Suzuki, Studies of hydration by broad-line pulsed NMR, Appl. Spectroscopy Rev. 20:1 (1984).CrossRefGoogle Scholar
  30. 30.
    S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in wheat flour suspensions as studied by proton and oxygen-17 nuclear magnetic resonance, J. Agric. Food Chem. 34:17 (1986).CrossRefGoogle Scholar
  31. 31.
    S.J. Richardson and M.P. Steinberg, Applications of nuclear magnetic resonance, in: “Water Activity: Theory and Applications to Foods,” L.B. Rockland and L.R. Beuchat, eds., Marcel Dekker, New York (1987).Google Scholar
  32. 32.
    A. Pande, “Handbook of Moisture Determination and Control: Principles, Techniques and Applications,” Vol. 2, Marcel Dekker, New York (1975).Google Scholar
  33. 33.
    M. Tomassetti, L. Campanella, M. Delfini, and T. Aureli, Determination of moisture in food flours. A comparative thermogravimetric and NMR study, Part 2, Thermochimica Acta 120:81 (1987).CrossRefGoogle Scholar
  34. 34.
    R.H. Walmsley and M. Shporer, Surface-induced NMR line splittings and augmented relaxation rates in water, J. Chem. Phys. 68:2584 (1978).CrossRefGoogle Scholar
  35. 35.
    B. Halle and H. Wennerstrom, Interpretation of magnetic resonance data from water nuclei in heterogeneous systems, J. Chem. Phys. 75:1928 (1981).CrossRefGoogle Scholar
  36. 36.
    S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in starch powders by nuclear magnetic resonance, Starch 39:198 (1987).CrossRefGoogle Scholar
  37. 37.
    P.T. Callaghan, M.A. Le Gros, and D.N. Pinder, The measurement of diffusion using deuterium pulsed field gradient nuclear magnetic resonance, J. Chem. Phvs. 79:6372 (1983).CrossRefGoogle Scholar
  38. 38.
    P.T. Callaghan and J. Lelievre, The influence of polymer size and shape on self-diffusion of polysaccharides and solvents, Analytica Chimica Acta 189:145 (1986).CrossRefGoogle Scholar
  39. 39.
    J. Grandjean and P. Laszlo, Multinuclear and pulsed gradient magnetic resonance studies of sodium cations and of water reorientation at the interface of a clay, J. Magn. Reson. 83:128 (1989).Google Scholar
  40. 40.
    I.L. Pykett, J.H. Newhouse, F.S. Buonanno, T.J. Brady, M.R. Goldman, J.P. Kistler, and G.M. Pohost, Principles of nuclear magnetic resonance imaging, Radiology 143:157 (1982).Google Scholar
  41. 41.
    W.P. Rothwell, Nuclear magnetic resonance imaging, Applied Optics 24:3958 (1985).CrossRefGoogle Scholar
  42. 42.
    P.G. Morris, “Nuclear Magnetic Resonance: Imaging in Medicine and Biology,” Clarendon Press, Oxford (1986).Google Scholar
  43. 43.
    R.A. Assink, A. Caprihan, and E. Fukushima, Density profiles of a draining foam by nuclear magnetic resonance imaging, AICHE J. 34:2077 (1988).CrossRefGoogle Scholar
  44. 44.
    C.D. Eccles, P.T. Callaghan, and C.F. Jenner, Measurement of the self-diffusion coefficient of water as a function of position in wheat as grain using nuclear magnetic resonance imaging, Biophys. J. 53:77 (1988).CrossRefGoogle Scholar
  45. 45.
    E. Perez, R. Kavten, and M.J. McCarthy, Noninvasive measurement of moisture profiles during the drying of an apple, in: “Drying’ 89,” A.S. Mujumdar, ed., Hemisphere, New York (1989).Google Scholar
  46. 46.
    G. Gassner, Magnetic resonance imaging in agriculture, in: “Nuclear Magnetic Resonance in Agriculture,” P.E. Pfeffer and W.V. Gerasimowicz, eds., CRC Press, Boca Raton, FL (1989).Google Scholar
  47. 47.
    I.D. Campbell and R.A. Dwek, “Biological Spectroscopy,” Benjamin/Cummings, Menlo Park, CA (1984).Google Scholar
  48. 48.
    R.E. Richards and F. Franks, A discussion on water structure and transport in biology, Phil. Trans. R. Soc. Lond. B. 278:1 (1977).Google Scholar
  49. 49.
    R.G. Bryant, NMR relaxation studies of solute-solvent interactions, Ann. Rev. Phys. Chem. 29:167 (1978).CrossRefGoogle Scholar
  50. 50.
    R. Mathur-De Vrë, The NMR studies of water in biological systems, Prog. Biophvs. Molec. Biol. 35:103 (1979).CrossRefGoogle Scholar
  51. 51.
    H. Weisser, NMR-Techniques in studying bound water in foods, in: “Food Process Engineering, Vol. 1., Food Processing Systems,” P. Linko, Y. Milkki, J. Olkku, and J. Larinkari, eds., Applied Science, London (1980).Google Scholar
  52. 52.
    N. Nagashima and E. Suzuki, Pulsed NMR and state of water in foods, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  53. 53.
    E.D. von Meerwall, Self-diffusion in polymer systems, measured with field-gradient spin-echo NMR methods, Advances in Polymer Sci. 54:1 (1983).CrossRefGoogle Scholar
  54. 54.
    E.D. von Meerwall, Pulsed and steady field gradient NMR diffusion measurements in polymers, Rubber Chem. Technol. 58:527 (1985).CrossRefGoogle Scholar
  55. 55.
    I. Horman, NMR spectroscopy, in: “Analysis of Foods and Beverages: Modern Techniques,” G. Charalambous, ed., Academic Press, New York (1984).Google Scholar
  56. 56.
    W. Saenger, Structure and dynamics of water surrounding biomolecules, Ann. Rev. Biophys. Chem. 16:93 (1987).CrossRefGoogle Scholar
  57. 57.
    P. Stilbs, Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Progress in NMR Spectroscopy 19:1 (1987).CrossRefGoogle Scholar
  58. 58.
    P.J. Lillford, The polymer/water relationship—its importance for food structure, in: “Food Structure—Its Creation and Evaluation,” J.M.V. Blanshard and J.R. Mitchell, eds., Butterworths, London (1988).Google Scholar
  59. 59.
    I.C. Baianu, High-resolution NMR studies of food proteins, in: “Nuclear Magnetic Resonance in Agriculture,” P.E. Pfeffer and W.V. Gerasimowicz, eds., CRC Press, Boca Raton, FL (1989).Google Scholar
  60. 60.
    T.F. Kumosinski and H. Pessen, Relaxation and cross-relaxation: NMR determination of water interactions with proteins, in: “Nuclear Magnetic Resonance in Agriculture,” P.E. Pfeffer and W.V. Gerasimowicz, eds., CRC Press, Boca Raton, FL (1989).Google Scholar
  61. 61.
    A. Abragam, “The Principles of Nuclear Magnetism,” Clarendon Press, Oxford (1961).Google Scholar
  62. 62.
    P. Laszlo, “NMR of Newly Accessible Nuclei,” Vol. 1, Academic Press, New York (1983).Google Scholar
  63. 63.
    W. Kemp, “NMR in Chemistry: A Multinuclear Introduction,” MacMillian Education, London (1986).Google Scholar
  64. 64.
    A.E. Derome, “Modern NMR Techniques for Chemistry Research,” Pergamon Press, New York (1987).Google Scholar
  65. 65.
    F.W. Wehrli, Principles of magnetic resonance, in: “Magnetic Resonance Imaging,” D.D. Stark and W.G. Bradley, eds., C.V. Mosby, St. Louis (1988).Google Scholar
  66. 66.
    L.J. Berliner and J. Reuben, “Biological Magnetic Resonance,” Plenum Press, New York (1980).CrossRefGoogle Scholar
  67. 67.
    M.L. Martin, J.J. Delpuech, and G.J. Martin, “Practical NMR Spectroscopy,” Heyden and Son, London (1980).Google Scholar
  68. 68.
    A. Kalk and H.J.C. Berendsen, Proton magnetic relaxation and spin diffusion in proteins, J. Magn. Reson. 24:343 (1976).Google Scholar
  69. 69.
    H. Edzes and E. Samulski, The measurement of cross-relaxation effects in proton NMR spin lattice relaxation of water in biological systems: Hydrated collagen and muscle, J. Magn. Reson. 31:207 (1978).Google Scholar
  70. 70.
    S.H. Koenig, R.G. Bryant, K. Hallenga, and G.S. Jacobs, Magnetic cross-relaxation among protons in protein solutions, Biochem. 17:4348 (1978).CrossRefGoogle Scholar
  71. 71.
    R.G. Bryant and W.M. Shirley, Dynamic deductions from nuclear magnetic resonance relaxation measurements at the water-protein interface, Biophvs. J. 32:3 (1980).CrossRefGoogle Scholar
  72. 72.
    G.D. Fullerton, J.L. Potter, and N.C. Dornbluth, NMR relaxation of protons in tissues and other macromolecular water solutions, Magn. Reson. Imaging 1:209 (1982).CrossRefGoogle Scholar
  73. 73.
    R.G. Bryant and M. Jarvis, Nuclear magnetic relaxation dispersions in protein solutions. A test of proton-exchange coupling, J. Phys. Chem. 88:1323 (1984).CrossRefGoogle Scholar
  74. 74.
    H. Peemoeller, D.W. Kydon, A.R. Sharp, and L.J. Schreiner, Crossrelaxation at the lysozyme-water interface: An NMR line-shape-relaxation correlation study, Can. J. Phvs. 62:1002 (1984).CrossRefGoogle Scholar
  75. 75.
    H. Peemoeller, F.G. Yeomans, D.W. Kydon, and A.R. Sharp, Water molecule dynamics in hydrated lysozyme: A deuteron magnetic resonance study, Biophys. J. 49:943 (1986).CrossRefGoogle Scholar
  76. 76.
    H. Pessen, J.M. Purcell, and H.M. Farrell, Proton relaxation ratio of water in dilute solutions of β-lactoglobulin. Determination of cross-relaxation and correlation with structural changes by the use of two genetic variants of a self-associating globular protein, Biochim. Biophvs. Acta 828:1 (1985).CrossRefGoogle Scholar
  77. 77.
    G.D. Fullerton, V.A. Ord, and I.L. Cameron, An evaluation of the hydration of lysozyme by an NMR titration method, Biochim. Biophys. Acta 869:230 (1986).CrossRefGoogle Scholar
  78. 78.
    H.E. Rorschach and C.F. Hazlewood, Protein dynamics and the NMR relaxation time T1 of water and biological systems, J. Magn. Reson. 70:79 (1986).Google Scholar
  79. 79.
    W.B. Wise and P.E. Pfeffer, Measurement of cross-relaxation effects in the proton NMR of water in fibrous collagen and insoluble elastin, Macromolecules 20:1550 (1987).CrossRefGoogle Scholar
  80. 80.
    J.C. Gore, M.S. Brown, J. Zhong, and I.M. Armitage, Prediction of proton relaxation rates from measurements of deuterium relaxation in aqueous systems, J. Magn. Reson. 83:246 (1989).Google Scholar
  81. 81.
    H.J.C. Berendsen, Specific interactions of water with biopolymers, in: “Water—A Comprehensive Treatise, Vol. 5, Water in Disperse Systems,” F. Franks, ed., Plenum Press, New York (1975).Google Scholar
  82. 82.
    B. Hale, T. Andersson, S. Forsen, and B. Lindman, Protein hydration from oxygen-17 magnetic relaxation, J. Am. Chem. Soc. 103:500 (1981).CrossRefGoogle Scholar
  83. 83.
    T.S. Lioutas, I.C. Baianu, and M.P. Steinberg, Oxygen-17 and deuterium nuclear magnetic resonance studies of lysozyme hydration, Archives Biochem. Biophvs. 247:136 (1986).Google Scholar
  84. 84.
    S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in sucrose solutions determined by deuterium and oxygen-17 nuclear magnetic resonance measurements, J. Food Sci. 52:806 (1987).CrossRefGoogle Scholar
  85. 85.
    T.F. Kumosinski, H. Pessen, S.J. Prestrelski, and H.M. Farrell, Water interactions with varying molecular states of bovine casein: 2H NMR relaxation studies, Archives Biochem. Biophvs. 257:259 (1987).CrossRefGoogle Scholar
  86. 86.
    L. Van Dijk, M.L.H. Gruwel, W. Jesse, J. De Bleijser, and J.C. Leyte, Sodium ion and solvent nuclear relaxation results in aqueous solutions of DNA, Biopolvmers 26:261 (1987).CrossRefGoogle Scholar
  87. 87.
    L. Piculell, Water 17O and 2H spin relaxation in alkylammonium chloride micellar solutions, J. Phys. Chem. 89:3590 (1985).CrossRefGoogle Scholar
  88. 88.
    L. Piculell, Water spin relaxation in colloidal systems. Part 1. 17O and 2H relaxation in dispersions of colloidal silica. J. Chem. Soc. Faraday Trans. 1 82:387 (1986).CrossRefGoogle Scholar
  89. 89.
    L. Piculell and B. Halle, Water spin relaxation in colloidal systems. Part 2. 17O and 2H relaxation in protein solutions, J. Chem. Soc., Faraday Trans. 1 82:401 (1986).CrossRefGoogle Scholar
  90. 90.
    B. Halle and L. Piculell, Water spin relaxation in colloidal systems. Part 3. Interpretation of the low-frequency dispersion, J. Chem. Soc. Faraday Trans. 1 82:415 (1986).CrossRefGoogle Scholar
  91. 91.
    L.T. Kakalis and I.C. Baianu, Oxygen-17 and deuterium nuclear magnetic relaxation studies of lyzozyme hydration in solution: Field dispersion concentration, pH/pD, and protein activity dependence, Archives Biochem. Biophys. 267:829 (1988).CrossRefGoogle Scholar
  92. 92.
    G. Carlstrom and B. Halle, Water dynamics in microemulsion droplets. A nuclear spin relaxation study, Langmuir 4:1346 (1988).CrossRefGoogle Scholar
  93. 93.
    G. Carlstrom and B. Halle, Shape fluctuations and water diffusion in macroemulsion droplets. A nuclear spin relaxation study, J. Phys. Chem. 93:3287 (1989).CrossRefGoogle Scholar
  94. 94.
    H.H. Mantsch, H. Saito, and I.C.P. Smith, Deuterium magnetic resonance, applications in chemistry, physics and biology, Adv. NMR Spectra 11:211 (1977).CrossRefGoogle Scholar
  95. 95.
    C. Brevard and J.P. Kintzinger, Deuterium and tritium, in: “NMR and the Periodic Table,” R.K. Harris and B.E. Mann, eds., Academic Press, New York (1978).Google Scholar
  96. 96.
    R. Mathur-De Vrë, R. Grimëe-Declerck, and P. Lejeune, An NMR study of isotope distribution and state of water in the hydration layer of DNA, in: “Biophysics of Water,” F. Franks and S.F. Mathias, eds., John Wiley & Sons, New York (1982).Google Scholar
  97. 97.
    J.A. Glasel, Nuclear magnetic resonance studies on water and ice, in: “Water—A Comprehensive Treatise,” Vol. 1, F. Franks, ed., Plenum Press, New York (1972).Google Scholar
  98. 98.
    S. Meiboom, Nuclear magnetic resonance study of the proton transfer in water, J. Chem. Phys. 34:375 (1961).CrossRefGoogle Scholar
  99. 99.
    S.W. Rabideau and H.G. Hecht, Oxygen-17 linewidths as influenced by proton exchange in water, J. Chem. Phys. 47:544 (1967).CrossRefGoogle Scholar
  100. 100.
    J.P. Kintzinger and H. Marsmann, “Oxygen-17 and Silicon-29,” Springer-Verlag, New York (1981).CrossRefGoogle Scholar
  101. 101.
    B. Halle and G. Karlstrom, Prototropic charge migration in water. Part 1, J. Chem. Soc. Faraday Trans. 279:1031 (1983).Google Scholar
  102. 102.
    S.J. Richardson, Contribution of proton exchange to the oxygen-17 nuclear magnetic resonance transverse relaxation rate in water and starch-water systems, Cereal Chem. 66:244 (1989).Google Scholar
  103. 103.
    W.L. Earl and W. Niederberger, Proton decoupling in 17O nuclear magnetic resonance, J. Magn. Reson. 27:351 (1977).Google Scholar
  104. 104.
    S.J. Richardson Schmidt, Characterization of water in foods by NMR, in: “Applications of NMR in Biopolymers,” Plenum, New York (1990).Google Scholar
  105. 105.
    B.R. Garrett, A.B. Denison, and S.W. Rabideau, Oxygen-17 relaxation in water, J. Phys. Chem. 71:2606 (1967).CrossRefGoogle Scholar
  106. 106.
    T. St. Amour and D. Fiat, 17O magnetic resonance, Bulletin Magn. Reson. 1:118 (1980).Google Scholar
  107. 107.
    M.I. Burgar, Hydration role of water in biological systems, as determined by 0-17 NMR, Studia Biophvsica 91:29 (1982).Google Scholar
  108. 108.
    J.P. Kintzinger, Oxygen-17 NMR in: “NMR of Newly Accessible Nuclei,” Vol. 2, P. Laszlo, ed., Academic Press, New York (1983).Google Scholar
  109. 109.
    T.F. Kumosinski and H. Pessen, A deuteron and proton magnetic resonance relaxation study of β-lactoglobulin A association: Some approaches to Scatchard hydration of globular proteins, Arch. Biochem. Biophvs. 218:286 (1982).CrossRefGoogle Scholar
  110. 110.
    I.D. Kuntz and W. Kauzmann, Hydration of protein and polypeptides, Adv. Protein Chem. 28:239 (1974).CrossRefGoogle Scholar
  111. 111.
    J.L. Finney, J.M. Goodfellow, and P.L. Poole, The structure and dynamics of water in globular proteins, in: “Structural Molecular Biology — Methods and Applications,” D.B. Davies, W. Saenger, and S.S. Danyluk, eds., Plenum Press, New York (1982).Google Scholar
  112. 112.
    R. Cooke and I.D. Kuntz, The properties of water in biological systems, Ann. Rev. Biophys. Bioeng. 9035:95 (1974).CrossRefGoogle Scholar
  113. 113.
    W. Derbyshire, The dynamics of water in heterogenous systems with emphasis on subzero temperatures, in: “Water—A Comprehensive Treatise, Vol. 7, Water and Aqueous Solutions at Subzero Temperatures,” F. Franks, ed., Plenum Press, New York (1982).Google Scholar
  114. 114.
    D.R. Woodhouse, NMR in systems of biological significance, Ph.D. Thesis, University of Nottingham (1974).Google Scholar
  115. 115.
    H.M. Farrell, H. Pessen, and T.F. Kumosinski, Water interactions with varying molecular states of milk proteins: 2H NMR relaxation studies, 82nd Annual Meeting of the American Dairy Association, Paper #D116, Columbus, MO, June 21-24 (1987).Google Scholar
  116. 116.
    I.C. Baianu, personal communication (1989).Google Scholar
  117. 117.
    H.J. Hennig and H. Lechert, Nuclear magnetic resonance investigations and their application in food chemistry, in: “Application de la spectrometric de masse et de la resonance magnetique nucleaire dans les industries alimentaires,” XV Symposium International Bologna, 12-13 Nov., Commission Internationale des Industries Agricoles et Alimentaires (1975).Google Scholar
  118. 118.
    J.R. Hansen, Hydration of soybean protein, J. Agric. Food Chem. 24:1136 (1976).CrossRefGoogle Scholar
  119. 119.
    H.K. Leung, J.A. Magnuson, and B.L. Bruinsma, Pulsed nuclear magnetic resonance study of water mobility in flour doughs, J. Food Sci. 44:1408 (1979).CrossRefGoogle Scholar
  120. 120.
    H.K. Leung, J.A. Magnuson, and B.L. Bruinsma, Water binding of wheat flour doughs and breads as studied by deuteron relaxation, J. Food Sci. 48:95 (1983).CrossRefGoogle Scholar
  121. 121.
    S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in starch-sucrose systems determined by deuterium and oxygen-17 nuclear magnetic resonance, Starch 39:302 (1987).CrossRefGoogle Scholar
  122. 122.
    H. Weisser, NMR spectroscopy in the food industry, in: “Brucker Minispec Application Note 7,” Institut für Lebensmittelverfahrenstechnik, Universität Karlsruhe, West Germany.Google Scholar
  123. 123.
    H. Nakano and T. Yasui, Pulsed nuclear magnetic resonance studies of water in myosin suspension during dehydration, Agric. Biol. Chem. 43:89 (1979).CrossRefGoogle Scholar
  124. 124.
    T. Yasui, M. Ishioroshi, H. Nakano, and K. Samejima, Changes in shear modulus ultrastructure and spin-spin relaxation times of water associated with heat-induced gelation of myosin, J. Food Sci. 441:1201 (1979).CrossRefGoogle Scholar
  125. 125.
    T.S. Lioutas, I.C. Baianu, P.J. Bechtel, and M.P. Steinberg, Oxygen-17 and sodium-23 nuclear magnetic resonance studies of myofibrillar protein interactions with water and electrolytes in relation to sorption isotherms, J. Agric. Food Chem. 36:437 (1988).CrossRefGoogle Scholar
  126. 126.
    A. Mora-Gutierrez, Hydration and activity studies of bovine skeletal muscle proteins and wheat gliadins by nuclear magnetic resonance, Ph.D. Thesis, University of Illinois, Urbana, IL (1989).Google Scholar
  127. 127.
    P.J. Lillford, A.H. Clark, and D.V. Jones, Distribution of water in heterogeneous food and model systems, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).Google Scholar
  128. 128.
    P.J. Lillford, D.V. Jones, and G.W. Rodger, Water in fish, in: “Advances in Fish Science and Technology,” J.J. Connell, ed., Fishing News Books, England (1980).Google Scholar
  129. 129.
    R.W. Currie, R. Jordan, and F.H. Wolfe, Changes in water structure in postmortem muscle, as determined by NMR T1 values, J. Food Sci. 46:822 (1981).CrossRefGoogle Scholar
  130. 130.
    T. Suzuki, State of water in sea food, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  131. 131.
    G.R. Trout, Techniques for measuring water-binding capacity in muscle foods—A review of methodology, Meat Sci. 23:235 (1988).CrossRefGoogle Scholar
  132. 132.
    C. Migchelsen and H.J.C. Berendsen, Proton exchange and molecular orientation of water in hydrated collegen fibers. An NMR study of H2O and D2O, J. Chem. Phys. 59:296 (1973).CrossRefGoogle Scholar
  133. 133.
    C.A.J. Hoeve, The structure of water in polymers, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).Google Scholar
  134. 134.
    J.P. Renou, J. Alizon, M. Dohri, and H. Robert, Study of the water collagen system by NMR cross-relaxation experiments, J. Biochem. Biophys. Methods 7:91 (1983).CrossRefGoogle Scholar
  135. 135.
    J.R. Grigera and K.J. Bienkiewicz, Hydration of collagen. Support for the exchange model, Studia Biophysica 103:195 (1984).Google Scholar
  136. 136.
    J. Maquet, H. Theveneau, M. Djabourov, and P. Papon, 1H n.m.r. study of gelatin gels, Int. J. Biol. Macromol. 6:162 (1984).CrossRefGoogle Scholar
  137. 137.
    J. Maquet, H. Theveneau, M. Djabourov, J. Leblond, and P. Papon, State of water in gelatin solutions and gels: an 1H n.m.r. investigation, Polymers 27:1103 (1986).CrossRefGoogle Scholar
  138. 138.
    P. Lambelet, R. Berrocal, C. Desarzens, I. Froehlicher, and F. Ducret, Pulsed low-resolution NMR investigations of protein sols and gels, J. Food Sci. 53:943 (1988).CrossRefGoogle Scholar
  139. 139.
    S. Brunauer, P.H. Emmett, and E. Teller, Adsorption of gases in multi-molecular layers, J. Amer. Chem. Soc. 60:309 (1938).CrossRefGoogle Scholar
  140. 140.
    R.S. Bradley, Polymolecular adsorbed films. I. The adsorption of argon on salt crystals at low temperatures and the determination of surface fields, J. Chem. Soc. 1467 (1936).Google Scholar
  141. 141.
    R. Khan, D. Stehli, L.S. Wei, and M.P. Steinberg, Activity and mobility of water in sweetened whole soy concentrates and their rheological properties, J. Food Sci. 54:931 (1989).CrossRefGoogle Scholar
  142. 142.
    S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Relation between oxygen-17 NMR and rheological characteristics of wheat flour suspensions, J. Food Sci. 50:1148 (1985).CrossRefGoogle Scholar
  143. 143.
    J. Fanni, D. Canet, K. Elbayed, and J. Hardy, 1H and 23Na NMR relaxation studies of the NaCl/β-lactoglobulin system equilibrated at various water activities, J. Food Sci. 54:909 (1989).CrossRefGoogle Scholar
  144. 144.
    S.P.F.M. Roefs, H. Van As, and T. Van Vliet, Pulse NMR of casein dispersions, J. Food Sci. 54:704 (1989).CrossRefGoogle Scholar
  145. 145.
    H.M. Farrell, H. Pessen, and T.F. Kumosinski, Water interactions with bovine caseins by hydrogen-2 nuclear magnetic resonance relaxation studies: Structural implications, J. Dairy Sci. 72:562 (1989).CrossRefGoogle Scholar
  146. 146.
    R. Brosio, G. Altobelli, S.Y. Yu, and A. Di Nola, A pulsed low-resolution NMR study of water binding to powdered milk, J. Fd. Technol. 18:219 (1983).CrossRefGoogle Scholar
  147. 147.
    E. Brosio, G. Altobelli, and A. Di Nola, A pulsed low-resolution NMR study of water binding to milk proteins, J. Fd. Technol. 19:103 (1984).CrossRefGoogle Scholar
  148. 148.
    J. Lelievre and L.K. Creamer, An NMR study of the formation and syneresis of renneted milk gels, Milchwissenschaft 33:73 (1978).Google Scholar
  149. 149.
    E.G. Samuelsson and B. Hueg, Nuclear magnetic resonance (NMR) as a method for measuring the rate of solution of dried milk, Milchwissenschaft 28:329 (1973).Google Scholar
  150. 150.
    H.K. Leung, M.P. Steinberg, L.S. Wei, and A.I. Nelson, Water binding of macromolecules determined by pulsed NMR, J. Food Sci. 41:297 (1976).CrossRefGoogle Scholar
  151. 151.
    K.W. Lang and M.P. Steinberg, Characterization of polymer and solute bound water by pulsed NMR, J. Food Sci. 48:517 (1983).CrossRefGoogle Scholar
  152. 152.
    T.L. James and K.T. Gillen, Nuclear magnetic resonance relaxation time and self-diffusion constant of water in hen egg white and yolk, Biochim. Biophys. Acta 286:10 (1972).CrossRefGoogle Scholar
  153. 153.
    S.M. Goldsmith and R.T. Toledo, Studies on egg albumin gelatin using nuclear magnetic resonance, J. Food Sci. 50:59 (1985).CrossRefGoogle Scholar
  154. 154.
    J.M. Harvey and M.C.R. Symons, Proton magnetic resonance study of the hydration of glucose, Nature 261:435 (1976).CrossRefGoogle Scholar
  155. 155.
    J.M. Harvey and M.C.R. Symons, The hydration of monosaccharides—An NMR study, J. Solution Chem. 7:571 (1978).CrossRefGoogle Scholar
  156. 156.
    S. Bociek and F. Franks, Proton exchange in aqueous solutions of glucose, J. Chem. Soc. Faraday Trans. 1 2:262 (1979).CrossRefGoogle Scholar
  157. 157.
    A. Mora-Gutierrez and I.C. Baianu, 1H NMR relaxation and viscosity measurements on solutions and suspensions of carbohydrates and starch from corn: The investigation of carbohydrate hydration and stereochemical and aggregation effects in relation to 17O and 13C NMR data for carbohydrate solutions, J. Agric. Food Chem. 37:1459 (1989).CrossRefGoogle Scholar
  158. 158.
    M.J. Tait, A. Suggett, F. Franks, S. Ablett, and P.A. Quiekenden, Hydration of monosaccharides: A study by dielectric and nuclear magnetic relaxation, J. Solution Chem. 1:131 (1972).CrossRefGoogle Scholar
  159. 159.
    A. Suggett, S. Ablett, and P.J. Lillford, Molecular motion and interactions in aqueous carbohydrate solutions. II. Nuclear-magnetic-relaxation studies, J. Solution Chem. 5:17 (1976).CrossRefGoogle Scholar
  160. 160.
    A. Suggett, Molecular motion and interactions in aqueous carbohydrate solutions. III. A combined nuclear magnetic and dielectric-relaxation strategy, J. Solution Chem. 5:33 (1976).CrossRefGoogle Scholar
  161. 161.
    G.W. Padua, Water states associated with skim milk components as determined by NMR, Ph.D. Thesis, University of Illinois, Urbana, IL (1989).Google Scholar
  162. 162.
    M.E. Augustine, S.J. Richardson, and C. Sullivan, The effects of the water mobility of selected sugar solutions on food starch functionality as measured by oxygen-17 NMR and Brabender Amylograph, International Conference, Agriculture and Food Chemistry Division of ACS, Sweetness: Carbohydrate and Low Calorie, Sept. 22–25, Los Angeles, CA (1988).Google Scholar
  163. 163.
    H.M. Lai and S.J. Schmidt, Water mobility and crystallization behavior of lactose-water systems as studied by oxygen-17 and carbon-13 NMR, J. Food Sci, in press (1989).Google Scholar
  164. 164.
    M.J. Tait, S. Ablett, and F. Franks, An NMR investigation of water in carbohydrate systems, in: “Water Structure at the Water-Polymer Interface,” H.H.G. Jellinik, ed., Plenum Press, New York (1972).Google Scholar
  165. 165.
    H. Lechert and H.J. Hennig, NMR investigations on the behavior of water in starches, in: “Magnetic Resonance in Colloid and Interface Science,” H.A. Resing and C.G. Wade, eds., ACS Symp. Ser. 34, American Chemical Society, Washington, DC (1976).Google Scholar
  166. 166.
    H. Lechert, W. Maiwald, R. Kothe, and W.D. Basler, NMR-study of water in some starches and vegetables, J. Food Proc. Preserv. 3:275 (1980).CrossRefGoogle Scholar
  167. 167.
    H. Lechert, Water binding on starch: NMR studies on native and gelatinized starch, in: “Water Activity: Influences on Food Quality,” L.B. Rockland and G.F. Stewart, eds., Academic Press, New York (1981).Google Scholar
  168. 168.
    M.J. Tait, S. Ablett, and F.W. Wood, The binding of water on starch, an NMR investigation, J. Colloid Interface Sci. 41:594 (1972).CrossRefGoogle Scholar
  169. 169.
    H.J. Hennig and H. Lechert, Measurement of the magnetic relaxation times of the protons in native starches with different water contents, Starch 26:232 (1974).CrossRefGoogle Scholar
  170. 170.
    H.J. Hennig, NMR-investigations of the role of water for the structure of native starch granules, Starch 29:1 (1977).CrossRefGoogle Scholar
  171. 171.
    H.J. Hennig and H. Lechert, DMR study of D2O in native starches of different origins and amylose of type B, J. Colloid Interface Sci. 62:199 (1977).CrossRefGoogle Scholar
  172. 172.
    V.I. Schwier and H. Lechert, X-ray and nuclear magnetic resonance investigations on some structure problems of starch, Starch 34:11 (1982).CrossRefGoogle Scholar
  173. 173.
    S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in corn starch suspensions determined by nuclear magnetic resonance, Starch 39:79 (1987).CrossRefGoogle Scholar
  174. 174.
    E. Jaska, Starch gelatinization as detected by proton magnetic resonance, Cereal Chem. 48:437 (1971).Google Scholar
  175. 175.
    J. Lelievre and J. Mitchell, A pulsed NMR study of some aspects of starch gelatinization, Starch 27:113 (1975).CrossRefGoogle Scholar
  176. 176.
    F. Nakazawa, J. Takahashi, S. Noguchi, and M. Kato, Water binding in gelatinized nonglutinous and glutinous rice starch determined by pulsed NMR, J. Home Econ. Japan 31:541 (1980).Google Scholar
  177. 177.
    P.T. Callaghan, K.W. Jolley, J. Lelievre, and R.B.K. Wong, Nuclear magnetic resonance studies of wheat starch pastes, J. Colloid Interface Sci. 92:332 (1983).CrossRefGoogle Scholar
  178. 178.
    F. Nakazawa, J. Takahashi, S. Noguchi, and M. Takada, Pulsed NMR study of water behavior in retrogradation process in rice and rice starch, J. Home Econ. Japan 34:566 (1983).Google Scholar
  179. 179.
    S.J. Richardson, Molecular mobilities of instant starch gels determined by oxygen-17 and carbon-13 nuclear magnetic resonance as affected by concentration and storage conditions, J. Food Sci. 53:1175 (1988).CrossRefGoogle Scholar
  180. 180.
    J.L. Jane, α-amylose action and 13C NMR studies on amylose-V complexes and retrograded amylose, Ph.D. Thesis, Iowa State University, Ames, IA (1985).Google Scholar
  181. 181.
    T. Brittain and R. Geddes, Water binding by glycogen molecules, Biochim. Biophvs. Acta 543:258 (1978).CrossRefGoogle Scholar
  182. 182.
    E. Hsi, G.F. Vogt, and R.G. Bryant, Nuclear magnetic resonance study of water adsorbed on cellulose, J. Colloid Interface Sci. 70:338 (1979).CrossRefGoogle Scholar
  183. 183.
    D.E. Woessner, B.S. Snowden, and Y.C. Chiu, Pulsed NMR study of the temperature hysteresis in the agar-water system, J. Colloid Interface Sci. 34:283 (1970).CrossRefGoogle Scholar
  184. 184.
    T.P. Labuza and G.C. Busk, An analysis of the water binding of gels, J. Food Sci. 44:1379 (1979).CrossRefGoogle Scholar
  185. 185.
    T.F. Child and N.G. Pryce, Steady-state and pulsed NMR studies of gelatin in aqueous agarose, Biopolymers 11:409 (1972).CrossRefGoogle Scholar
  186. 186.
    W. Derbyshire and I.D. Duff, NMR of agarose gels, Chem. Soc. Faraday Discuss. 57:243 (1973).CrossRefGoogle Scholar
  187. 187.
    S. Ablett, P.J. Lillford, S.M.A. Baghdahi, and W. Derbyshire, NMR relaxation in polysaccharide gels and films, in: “Magnetic Resonance in Colloid and Interface Science,” H.A. Resing and L.G. Wade, eds., ACS Symp. Ser. 34, American Chemical Society, Washington, DC (1976).Google Scholar
  188. 188.
    P.S. Belton, B.P. Hills, and E.R. Raimbaud, The effects of morphology and exchange of proton NMR relaxation in agarose gels, Mol. Phys. 63:825 (1988).CrossRefGoogle Scholar
  189. 189.
    M. Watase, K. Nishinari, A.H. Clark, and S.B. Ross-Murphy, Differential scanning calorimetry, rheology, X-ray and NMR of very concentrated agarose gels, Macromolecules 22:1196 (1989).CrossRefGoogle Scholar
  190. 190.
    N.M. Barfod, Calcium and water-binding activity during alginate gelation, in: “Gums and Stabilizers for the Food Industry,” G.O. Phillips, P.A. Williams, and D.J. Wedlock, eds., IRL Press, Oxford (1988).Google Scholar
  191. 191.
    A. Mora-Gutierrez and I.C. Baianu, Hydration studies of maltodextrins by proton, deuterium and oxygen-17 nuclear magnetic resonance, J. Food Sci. in press (1989).Google Scholar
  192. 192.
    P. Chinachoti and M.P. Steinberg, Correlation of proton T1 with polymer and solute waters in starch-sucrose mixtures, J. Food Sci. 54:691 (1989).CrossRefGoogle Scholar
  193. 193.
    H.S. Lim, D. Sobczynska, and C. Setser, 17O NMR studies on sucrose-wheat starch-water interactions with increasing temperature, 50th Ann. Meeting Institute Food Technologists, June 23–29, Chicago, IL (1989).Google Scholar
  194. 194.
    L.M. Hansen, J.V. Paukstelis, and C.S. Setser, 13C nuclear magnetic resonance spectroscopic methods for investigating sucrose-starch interactions with increasing temperature, Cereal Chem. 64:449 (1987).Google Scholar
  195. 195.
    I.D. Kuntz, Hydration of macromolecules. IV. Polypeptide conformation in frozen solutions, J. Amer. Chem. Soc. 93:516 (1971).CrossRefGoogle Scholar
  196. 196.
    L.J. Lynch and D.S. Webster, An investigation of the freezing of water associated with wool keratin by NMR methods, J. Colloid Interface Sci. 69:238 (1979).CrossRefGoogle Scholar
  197. 197.
    S. Katayama and S. Fujiwara, NMR study of the freezing/thawing mechanism of water in polyacrylamide gel, J. Phys. Chem. 84:2320 (1980).CrossRefGoogle Scholar
  198. 198.
    N. Nagashima and E. Suzuki, Computed instrumental analysis of the behavior of water in foods during freezing and thawing, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martin-us Nijhoff, Dordrecht (1985).Google Scholar
  199. 199.
    E. Suzuki and N. Nagashima, Freezing-thawing hysteresis phenomena of biological systems by the new method of proton magnetic resonance, Bull. Chem. Sci. Japan 55:2730 (1982).CrossRefGoogle Scholar
  200. 200.
    R.E. Hester and D.E.C. Quine, Quantitative analysis of food production by pulsed NMR. Rapid determination of oil and water in flour and feed-stuffs, J. Sci. Fd. Agric. 28:624 (1977).CrossRefGoogle Scholar
  201. 201.
    E. Brosio, F. Conti, A. Di Nola, O. Scorano, and F. Belestrieri, Simultaneous determination of oil and water content in olive husk by pulsed low resolution nuclear magnetic resonance, J. Fd. Technol. 16:629 (1981).CrossRefGoogle Scholar
  202. 202.
    E. Brosio, F. Conti, A. Di Nola, M. Scalzo, and E. Zulli, Oil and water determination in emulsions by pulsed low-resolution NMR, JAOCS 59:59 (1982).CrossRefGoogle Scholar
  203. 203.
    J.M. Shih, Determination of the oil and water content of rice by pulsed NMR, IBM Instruments, Danbury, CT (1983).Google Scholar
  204. 204.
    G. Ben-Et and D. Tatarsky, Application of NMR for the determination of HLB values of nonionic surfactants, JAOCS 49:499 (1972).CrossRefGoogle Scholar
  205. 205.
    J. Trumbetas, J.A. Fioriti, and R.J. Sims, Application of pulsed NMR to fatty emulsions, JAOCS 53:722 (1976).CrossRefGoogle Scholar
  206. 206.
    J. Trumbetas, J.A. Fioriti, and R.J. Sims, Nuclear magnetic resonance (NMR), JAOCS 54:433 (1977).CrossRefGoogle Scholar
  207. 207.
    J. Trumbetas, J.A. Fioriti, and R.J. Sims, Use of pulsed nuclear magnetic resonance to predict emulsion stability, JAOCS 55:248 (1978).CrossRefGoogle Scholar
  208. 208.
    N.M. Barfod, N. Krog, and W. Buchheim, Lipid-protein-emulsifier-water interactions in whippable emulsions, in: “Food Proteins. Part 1: Structure and Functional Relationships,” J. Kinsella and B. Soucie, eds., JAOCS in press (1989).Google Scholar
  209. 209.
    J.R. Hansen, High-resolution and pulsed nuclear magnetic resonance studies of microemulsions, J. Phys. Chem. 78:256 (1974).CrossRefGoogle Scholar
  210. 210.
    S. Arai and M. Watanabe, An enzymatically modified protein as a new surfactant and its function to interact with water and oil in an emulsion system, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  211. 211.
    P. Quist and B. Halle, Water dynamics and aggregate structure in reversed micelles at sub-zero temperatures, J. Chem. Soc. Faraday Trans. 1 84:1033 (1988).CrossRefGoogle Scholar
  212. 212.
    T. Fujiwara, Y. Kobayaski, Y. Kyogoku, M. Kuwabara, M. Kodama, and S. Seki, Behavior of water molecules associated with the phase transitions in the binary system of dioctadecyldimethylainmonium chloride and water studied by proton and deuterium magnetic resonances, J. Colloid Interface Sci. 127:26 (1989).CrossRefGoogle Scholar
  213. 213.
    J.B. Nagy, I. Bodart-Ravet, E.G. Derouane, A. Gourgue, and J.P. Verfaillie, Multinuclear NMR characterization of CTAB-hexanol-water, sodium oleatebutanol-water and triton x-100-decanol-water microemulsions, Colloids and Surfaces 36:229 (1989).CrossRefGoogle Scholar
  214. 214.
    W. Rollwitz, Using radio frequency spectroscopy in agriculture applications, Agric. Engr. May:12 (1985).Google Scholar
  215. 215.
    J. Crank and G.S. Park, “Diffusion in Polymers,” 2nd edn., Academic Press, New York (1976).Google Scholar
  216. 216.
    F. O. Blum, Pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy. Spectroscopy 1:32 (1986).Google Scholar
  217. 217.
    K.R. Harris, R. Mills, P.J. Back, and D.J. Webster, An improved NMR spin-echo apparatus for the measurement of self-diffusion of water in aqueous electrolyte solutions, J. Magn. Reson. 29:473 (1978).Google Scholar
  218. 218.
    R.M. Cotts, M.J.R. Hoch, T. Sun, and J.T. Marker, Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems, J. Magn. Reson. 83:252 (1989).Google Scholar
  219. 219.
    K.J. Parker and F.O. Zelaya, Observations of diffusion of fields in porous solids by pulsed field gradient NMR, Colloids and Surfaces 36:221 (1989).CrossRefGoogle Scholar
  220. 220.
    T.L. James and G.G. McDonald, Measurements of the self-diffusion coefficient of each component in a complex system using pulsed-gradient fourier transform NMR, J. Magn. Reson. 11:58 (1973).Google Scholar
  221. 221.
    J. Karger, H. Pfeifer, and W. Heink, Principles and application of self diffusion measurements by nuclear magnetic resonance, in: “Advances in Magnetic Resonance,” Vol. 12, J.S. Waugh, ed., Academic Press, New York (1988).Google Scholar
  222. 222.
    D. Canet, B. Diter, A. Belmajdoub, J. Brondeau, J.C. Boubel, and K. Elbayed, Self-diffusion measurements using a radio frequency field gradient, J. Magn. Reson. 81:1 (1989).Google Scholar
  223. 223.
    H.T. Stokes, Study of diffusion in solids by pulsed nuclear magnetic resonance, in: “Nontraditional Methods of Diffusion,” G.E. Murch, H.K. Birnbaum, and J.R. Cost, eds., Metallurgical Society of the American Institute of Mining, Metallurgical, and Petroleum Engineers, New York (1984).Google Scholar
  224. 224.
    H.J.V. Tyrrell and K.R. Harris, “Diffusion in Liquids: A Theoretical and Experimental Study,” Butterworths, Boston, MA (1984).Google Scholar
  225. 225.
    E. von Meerwell and M. Kamat, Effect of residual field gradients on pulsed-gradient NMR diffusion measurements, J. Magn. Reson. 83:309 (1980).Google Scholar
  226. 226.
    B. Lindman, P. Stilbs, and M.E. Moseley, Fourier transform NMR self-diffusion and microemulsion structure, J. Colloid Interface Sci. 83:569 (1981).CrossRefGoogle Scholar
  227. 227.
    P.T. Callaghan, Pulsed field gradient nuclear magnetic resonance as a probe of liquid state molecular organization, Aust. J. Phys. 37:359 (1984).CrossRefGoogle Scholar
  228. 228.
    D.C. Chang, H.E. Rorscharch, B.L. Nichols, and C.F. Hazlewood, Implications of diffusion coefficient measurements for structure of cellular water, Annals N.Y. Acad. Sci. 204:434 (1973).CrossRefGoogle Scholar
  229. 229.
    R.L. Cooper, B. Chang, A.C. Young, C.J. Martin, and B. Aucker-Johnson, Restricted diffusion in biophysical systems, Biophys. J. 14:161 (1974).CrossRefGoogle Scholar
  230. 230.
    J. Grandjean and P. Laszlo, Multinuclear and pulsed gradient magnetic resonance studies of sodium cations and of water reorientation at the interface of a clay, J. Magn. Reson. 83:128 (1989).Google Scholar
  231. 231.
    P.T. Callaghan and K.W. Jolley, Diffusion of fat and water in cheese as studied by pulsed field gradient-nuclear magnetic resonance, J. Colloid Interface Sci. 93:521 (1983).CrossRefGoogle Scholar
  232. 232.
    C. Buttersack and W. Basler, Self-diffusion of water in sulfonic and ion exchange resins, J. Polymer Sci. Part B: Polymer Phys. 27:1551 (1989).CrossRefGoogle Scholar
  233. 233.
    M.T. Clarkson, D. Beaglehole, and P.T. Callaghan, Molecular diffusion in a microemulsion, Phvs. Rev. Lett. 54:1722 (1985).CrossRefGoogle Scholar
  234. 234.
    L. Cappola, C. La Mesa, G.A. Ranieri, and M. Terenzi, Water self-diffusion in micellar solution and in lyotropic mesophases of the system water/Triton TX-100, Colloid Polymer Sci. 267:86 (1989).CrossRefGoogle Scholar
  235. 235.
    E. von Meerwall and T. Stone, Network fraction and molecular motions in polymer composites: An NMR relaxation and self-diffusion study, J. Polymer Sci. Part B: Polymer Phys. 27:503 (1989).CrossRefGoogle Scholar
  236. 236.
    B. Nystrom, M.E. Moseley, W. Brown, and J. Roots, Molecular motion of small molecules in cellulose gels studied by NMR, J. Appl. Polym. Sci. 26:3385 (1981).CrossRefGoogle Scholar
  237. 237.
    W. Brown and P. Stilbs, Self-diffusion measurements in bovine serum albumin solutions and gels using a pulsed-gradient spin-echo NMR technique, Chemica Scripta 19:161 (1982).Google Scholar
  238. 238.
    V.W. Basier and H. Lechert, Diffusion of water in starch gels, Starch 26:39 (1974).CrossRefGoogle Scholar
  239. 239.
    P.T. Callaghan and J. Lelievre, The size and shape of amylopectin: A study using pulsed-field gradient nuclear magnetic resonance, Biopolymers 24:441 (1985).CrossRefGoogle Scholar
  240. 240.
    J.H. Wang, Theory of the self-diffusion of water in protein solutions. A new method for studying the hydration and shape of protein molecules, J. Amer. Chem. Soc. 76:4755 (1954).CrossRefGoogle Scholar
  241. 241.
    P.T. Callaghan, K.W. Jolley, and J. Lelievre, Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance, Biophys. J. 28:133 (1979).CrossRefGoogle Scholar
  242. 242.
    D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders, Radiology 161:401 (1986).Google Scholar
  243. 243.
    D. Le Bihan, E. Breton, D. Lallemand, M.L. Aubin, J. Vignaud, and M. Laval-Jeantet, Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging, Radiology 168:497 (1988).Google Scholar
  244. 244.
    S. Blackband and P. Mansfield, Diffusion in liquid-solid systems by NMR imaging, J. Phvs. C: Solid State Phvs. 19:49 (1986).CrossRefGoogle Scholar
  245. 245.
    K.D. Merholdt, W. Hanicke, M.L. Gyngell, J. Frahn, and H. Bruhn, Rapid NMR imaging of molecular self-diffusion using a modified CE-FAST sequence, J. Magn. Reson. 82:115 (1989).Google Scholar
  246. 246.
    P.C. Lauterbur, Image formation by induced local interactions: Examples employing nuclear magnetic resonance, Nature 242:190 (1973).CrossRefGoogle Scholar
  247. 247.
    P. Mansfield and A.A. Maudsley, Medical imaging by NMR, J. Br. Radiol. 50:188 (1977).CrossRefGoogle Scholar
  248. 248.
    P. Mansfield and P.C. Morris, NMR imaging in biomedicine, in: “Advances in Magnetic Resonance,” Suppl. 2, J.S. Waugh, ed., Academic Press, New York (1982).Google Scholar
  249. 249.
    I.L. Pykett, NMR imaging in medicine, Scientific American 246:78 (1982).CrossRefGoogle Scholar
  250. 250.
    T.F. Budinger and P.C. Lauterbur, Nuclear magnetic resonance technology for medical studies, Science 226:288 (1984).CrossRefGoogle Scholar
  251. 251.
    J.P. Heiken, H.S. Glazer, J.K.T. Lee, W.A. Murphy, and M. Gado, “Manual of Clinical Magnetic Resonance Imaging,” Raven Press, New York (1986).Google Scholar
  252. 252.
    M.A. Foster and J.M.S. Hutchison, “Practical NMR Imaging,” IRL Press, Washington, DC (1987).Google Scholar
  253. 253.
    R.K. Lambert, R.J. Pack, Y. Xia, C.D. Eccles, and P.T. Callaghan, In vitro tracheal mechanics by nuclear magnetic resonance imaging, J. Appl. Physiol. 65:1872 (1988).Google Scholar
  254. 254.
    D.D. Stark and W.G. Bradley, “Magnetic Resonance Imaging,” C.V. Mosby, St. Louis, MO (1988).Google Scholar
  255. 255.
    F.W. Wehrli, D. Shaw, and J.B. Kneeland, “Biomedical Magnetic Resonance Imaging,” VCH, New York (1988).Google Scholar
  256. 256.
    D.M. Kramer, Imaging of elements other than hydrogen, in: “Nuclear Magnetic Resonance Imaging in Medicine,” L. Kaufman, L.E. Crooks, and A.R. Margulis, eds., Igaku-Shoin, New York (1981).Google Scholar
  257. 257.
    G.D. Mateescu, G.M. Uvars, and T. Dular, Water, ions and 0–17 magnetic resonance imaging, in: “Water and Ions in Biological Systems,” P. Lauger, L. Packer, and V. Sasilescu, eds., Birkhauser Verlag, Basel (1988).Google Scholar
  258. 258.
    G.D. Mateescu, G.M. Uvars, D.I. Pazara, N.A. Alldridge, J.C. La Manna, W.D. Lust, M. Mattingly, and W. Kuhn, Combined 170/1H magnetic resonance microscopy in plants, animals and materials: Present status and potential, in: “Synthesis and Applications of Isotopically Labelled Compounds,” T.A. Baillie and J.R. Jones, eds., Elsevier, Amsterdam (1989).Google Scholar
  259. 259.
    H. Lee and C. Potter, personal communication (1989).Google Scholar
  260. 260.
    H. Song and J.B. Litchfield, personal communication (1989).Google Scholar
  261. 261.
    P. Brunner and R.R. Ernst, Sensitivity and performance time in NMR imaging, J. Magn. Reson. 33:83 (1979).Google Scholar
  262. 262.
    P. Sprawls, Spatial characteristics of the MR image, in: “Magnetic Resonance Imaging,” C.V. Mosby, St. Louis, MO (1988).Google Scholar
  263. 263.
    L.W. Jelinski, R.W. Behling, H.K. Tubbs, and M.D. Cockman, NMR imaging: From whole bodies to single cells, Amer. Biotechnol. Lab. 7:34 (1989).Google Scholar
  264. 264.
    J.M. Listerud, S.W. Sinton, and G.P. Drobny, NMR imaging of materials, Anal. Chem. 61:23A (1988).CrossRefGoogle Scholar
  265. 265.
    J.B. Aguayo, S.J. Blackband, J. Schoeniger, M.A. Mattingly, and M. Hintermann, Nuclear magnetic resonance imaging of a single cell, Nature 322:190 (1986).CrossRefGoogle Scholar
  266. 266.
    L.D. Hall and T.J. Norwood, Zero-quantum-coherence, chemical-shift-resolved imaging in an inhomogeneous magnetic field, J. Magn. Reson. 67:382 (1986).Google Scholar
  267. 267.
    C.D. Eccles and P.T. Callaghan, High-resolution imaging. The NMR microscope, J. Magn. Reson. 68:393 (1986).Google Scholar
  268. 268.
    C.F. Jenner, Y. Xia, C.D. Eccles, and P.T. Callaghan, Circulation of water within wheat grain revealed by nuclear magnetic resonance micro-imaging, Nature 336:399 (1988).CrossRefGoogle Scholar
  269. 269.
    G.P. Cofer, J.M. Brown, and G.A. Johnson, In vivo magnetic resonance microscopy at 5 μm, J. Magn. Reson. 83:608 (1989).Google Scholar
  270. 270.
    B.H. Suits and D. White, NMR imaging in solids, Solid State Communications 50:291 (1984).CrossRefGoogle Scholar
  271. 271.
    N.M. Szevernyi and G.E. Maciel, NMR spin imaging of magnetically dilute nuclei in the solid state, J. Magn. Reson. 60:460 (1984).Google Scholar
  272. 272.
    F. De Luca, B.C. De Simone, B. Maraviglia, and C. Nuccetelli, NMR imaging new strategies: Magic angle imaging, Bull. Magn. Reson. 8:102 (1986).Google Scholar
  273. 273.
    W.P. Rothwell and H.J. Vinegar, Petrophysical applications of NMR imaging, Applied Optics 24:3969 (1985).CrossRefGoogle Scholar
  274. 274.
    H.J. Vinegar, X-ray CT and NMR imaging of rocks, J. Petroleum Technology March:257 (1986).Google Scholar
  275. 275.
    W.P. Rothwell, D.R. Holecek, and J.A. Kershaw, NMR imaging: Study of fluid absorption by polymer composites, J. Polymer Sci.: Polymer Letters Edition 22:241 (1984).CrossRefGoogle Scholar
  276. 276.
    R.S. Menon, A.L. MacKay, S. Flibotte, and J.R.T. Hailey, Quantitative separation of NMR images of water in wood on the basis of T2, J. Magn. Reson. 82:205 (1989).Google Scholar
  277. 277.
    H. Song and J.B. Litchfield, Nondestructive measurement of transient moisture profiles in corn during drying using NMR imaging, ASAE Meeting, Paper no. 88-6532, St. Joseph, MO (1988).Google Scholar
  278. 278.
    A.M. Kraynik, Foam Drainage, Sandia Report SAND83-0844 (1983).Google Scholar
  279. 279.
    M.J. McCarthy, K.L. McCarthy, J.B. German, and M. Winkler, Foam and emulsion stability: Measurements by magnetic resonance imaging, Proceedings 5th International Congress Engineering and Food, Cologne, Federal Republic of Germany, May 28–June 3 (1989).Google Scholar
  280. 280.
    J.B. German and M.J. McCarthy, Stability of aqueous foams: Analysis using magnetic resonance imaging, J. Agric. Food Chem. 37:1321 (1989).CrossRefGoogle Scholar
  281. 281.
    M.J. McCarthy and E. Perez, Measurement of effective moisture diffuivities using magnetic resonance imaging, Proceedings 5th International Congress Engineering and Food, Cologne, Federal Republic of Germany, May 28–June 3 (1989).Google Scholar
  282. 282.
    R. Ruan, S.J. Schmidt, A.R. Schmidt, and J.B. Litchfield, Nondestructive measurement of transient moisture profiles and the moisture diffusion coefficient in a potato during drying and absorption by NMR imaging, AICHE Summer National Meeting, Magnetic Resonance Imaging of Foods, Session 10, Philadelphia, PA (1989).Google Scholar
  283. 283.
    T.W. Redpath, D.G. Norris, R.A. Jones, and J.M.S. Hutchinson, A new method of NMR flow imaging, Phys. Med. Biol. 29:891 (1984).CrossRefGoogle Scholar
  284. 284.
    K. Kose, K. Satoh, T. Inovye, and H. Yasuoka, NMR flow imaging, J. Phvs. Soc. Japan 54:81 (1985).CrossRefGoogle Scholar
  285. 285.
    M. O’Connell, NMR blood flow imaging using multi-echo phase contrast sequences, Med. Phys. 12:59 (1985).CrossRefGoogle Scholar
  286. 286.
    F.H. Cho, C.H. Oh, Y.S. Kim, C.W. Mun, O. Nalcioglua, S.J. Lee, and M.K. Chung, A new nuclear magnetic resonance imaging technique for unambiquous unidirectional measurement of flow velocity, J. Appl. Phys. 60:1256 (1986).CrossRefGoogle Scholar
  287. 287.
    J.P. Ridgeway and M.A. Smith, A technique for velocity imaging using magnetic resonance imaging, Br. J. Radiol. 59:603 (1986).CrossRefGoogle Scholar
  288. 288.
    P.T. Callaghan, C.D. Eccles, and Y. Xia, NMR microscopy of dynamic displacements: k-space and q-space imaging, J. Phys. E: Sci. Instrum. 21:820 (1988).CrossRefGoogle Scholar
  289. 289.
    R.A. Meyer and T.R. Brown, Diffusion measurements by microscopic NMR imaging, J. Magn. Reson. 76:393 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Shelly J. Schmidt
    • 1
  • Hsi-Mei Lai
    • 1
  1. 1.Division of Foods and NutritionUniversity of IllinoisUrbanaUSA

Personalised recommendations