Advertisement

Kinetics of Water Sorption in Packaging Materials for Food

  • H. Weisser
  • F. Liebenspacher
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)

Abstract

The water content of paper and its time dependence are of great importance for the use of paper and cardboard as packaging materials. The physical process of water sorption and the mechanisms of water “binding” in paper, as fundamental principles of the kinetics, are discussed. Water exists in up to four different “states” (i.e. domains of mobility) in paper: the first layer at the primary sites on the surface of the fibers; the multimolecular layers, with less “binding” energy, on these inner surfaces; condensed water in the voids; and dissolved water in the cellulose fibers. All these “states” influence the shape of the sorption isotherm and correspond to a different water content and to different transport mechanisms. The various types of water “binding” on paper were studied by measuring the transversal relaxation rate, T2, using a pulsed Nuclear Magnetic Resonance spectrometer (minispec pc 120). In addition, a non-destructive, fast method of determining the water content in packaging materials with NMR spectroscopy is described.

Keywords

Sorption Isotherm Packaging Material Water Sorption Food Proc Moisture Sorption Isotherm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Buchner, H. Weisser, H. Vogelpohl, A.L. Baner, and O. Piringer, Foods, 4. Food Packaging, in: “Ullmann’s Encyclopedia of Industrial Chemistry,” 4th edn., Vol. A11, VCH Verlagsgesellschaft, Weinheim (1988).Google Scholar
  2. 2.
    G. Schricker, Relationship between packaging machine and packaging material, in: “Food Packaging and Preservation: Theory and Practice,” M. Mathlouthi, ed., Elsevier, London (1986).Google Scholar
  3. 3.
    W. Vollmer, Der Transport von Gasen und Dämpfen in Papier. Chemie-Ing.-Techn. 26:90 (1954).CrossRefGoogle Scholar
  4. 4.
    R. Heiss, “Verpackung von Lebensmitteln (Packaging of Food),” Springer, Berlin (1980).CrossRefGoogle Scholar
  5. 5.
    J.H. Hotchkiss, ed., “Food and Packaging Interactions,” Amer. Chem. Soc., Washington (1988).Google Scholar
  6. 6.
    M. Mathlouthi, ed., “Food Packaging and Preservation: Theory and Practice,” Elsevier, London (1986).Google Scholar
  7. 7.
    J.A. Bristow and P. Kolseth, eds., “Paper, Structure and Properties,” Marcel Dekker, New York (1986).Google Scholar
  8. 8.
    F. Liebenspacher and H. Weisser, Sorption of water vapour and its kinetics in cellulosic packaging material for food, in: Proceedings ICEF 5, Cologne (1989) [to be published by Elsevier, London].Google Scholar
  9. 9.
    A.T. Ahlen, Diffusion of sorbed water vapor through paper and cellulose film, Tappi 53:1320 (1970).Google Scholar
  10. 10.
    F. Liebenspacher and H. Weisser, Investigations on the sorption of water vapour in cellulosic packaging materials at lower temperatures, in: Proceedings IIR Meeting, Davis, California (1989).Google Scholar
  11. 11.
    J. Kuprianoff, ‘Bound water’ in foods, in: “Fundamental Aspects of the Dehydration of Foods,” Soc. Chem. Ind., London (1958).Google Scholar
  12. 12.
    D. Simatos and J.L. Multon, eds., “Properties of Water in Foods in Relation to Quality and Stability,” Martinus Nijhoff, Dordrecht (1985).Google Scholar
  13. 13.
    L.B. Rockland and L.R. Beuchat, “Water Activity: Theory and Applications to Food,” Marcel Dekker, New York (1987).Google Scholar
  14. 14.
    H.K. Leung, M.P. Steinberg, L.S. Wei, and A.I. Nelson, Water binding of macromolecules determined by pulsed NMR, J. Food Sci. 41:297 (1976).CrossRefGoogle Scholar
  15. 15.
    H. Weisser, NMR-techniques in studying bound water in foods, in: “Food Process Engineering, Vol. 1, Food Processing Systems,” P. Linko, ed., Applied Science, Barking/UK (1980).Google Scholar
  16. 16.
    E. Brosio, G. Altobelli, and A. di Nola, A pulsed low-resolution NMR study of water binding to milk proteins, J. Food Technol. 19:103 (1984).CrossRefGoogle Scholar
  17. 17.
    S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in wheat flour suspensions as studied by proton and oxygen-17 nuclear magnetic resonance, J. Agric. Food Chem. 34:17 (1986).CrossRefGoogle Scholar
  18. 18.
    H. Weisser, Untersuchungen zum gebundenen Wasser mittels Kernresonanz-Spektroskopie. ZFL Int. J. Food Technol. and Food Proc. Engng. 31:143 (1980).Google Scholar
  19. 19.
    Y. Ogiwara, H. Kubota, S. Hayashi, and N. Mitomo, Temperature dependency of bound water of cellulose studied by a high-resolution NMR spectrometer, J. Appl. Polym. Sci. 14:303 (1970).CrossRefGoogle Scholar
  20. 20.
    G.A. Persyn and W.L. Rollwitz, Nondestructive testing with transient magnetic resonance, 7th Symposium on Nondestructive Evaluation, Southwest Research Institute, San Antonio, Texas, April 23-25 (1969).Google Scholar
  21. 21.
    S. Bandyopadhyay, H. Weisser, and M. Loncin, Water adsorption isotherms of foods at high temperatures, Lebensm.-Wiss. u.-Technol. 13:182 (1980).Google Scholar
  22. 22.
    H.A. Iglesias and J. Chirife, “Handbook of Food Isotherms,” Academic Press, New York (1982).Google Scholar
  23. 23.
    H. Weisser, Influence of temperature on sorption equilibria, in: “Properties of Water in Foods in Relation to Quality and Stability,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  24. 24.
    W. Wolf and G. Jung, Wasserdampfsorptionsdaten für die Lebensmitteltrocknung, ZFL Int. J. Food Technol. and Food Proc. Engng. 36:68 (1985).Google Scholar
  25. 25.
    H. Weisser, Influence of temperature on sorption isotherms, in: “Food Engineering and Process Applications, Vol. 1, Transport Phenomena,” M. Le Maguer and P. Jelen, eds., Elsevier, London (1986).Google Scholar
  26. 26.
    H. Weisser and M. Schoch, Messen der Temperaturabhängigkeit von Wasserdampf-Sorpt ions isothermen mit verschiedenen Apparaturen, ZFL Int. J. Food Technol. and Food Proc. Engng. 38:298 (1987).Google Scholar
  27. 27.
    J.G. Kapsalis, Influences of hysteresis and temperature on moisture sorption isotherms, in: “Water Activity: Theory and Applications to Food,” L.B. Rockland and L.R. Beuchat, eds., Marcel Dekker, New York (1987).Google Scholar
  28. 28.
    M. Loncin and H. Weisser, Die Wasseraktivität und ihre Bedeutung in der Lebensmittelverfahrenstechnik, Chem.-Ing.-Techn. 49:312 (1977).CrossRefGoogle Scholar
  29. 29.
    T.O.K. Audu, M. Loncin, and H. Weisser, Sorption isotherms of sugars, Lebensm.-Wiss. u.-Technol. 11:31 (1978).Google Scholar
  30. 30.
    H. Weisser, R. Bürkle, and M. Loncin, Messen von Sorptionsisothermen bei höheren Temperaturen, ZFL Int. J. Food Technol. and Food Proc. Engng. 29:310 (1978).Google Scholar
  31. 31.
    G.D. Saravacos, D.A. Tsiourvas, and E. Tsami, Effect of temperature on the water adsorption isotherms of sultana raisins, J. Food Sci. 51:381 (1986).CrossRefGoogle Scholar
  32. 32.
    H. Weisser, J. Weber, and M. Loncin, Water vapour sorption isotherms of sugar substitutes in the temperature range 25 to 80°C, ZFL Int. J. Food Technol. and Food Proc. Engng. 33:89 (1982).Google Scholar
  33. 33.
    T.D. Jarrell, Effect of atmospheric humidity on the moisture content of paper, Paper Trade J. 55(3):47 (1927).Google Scholar
  34. 34.
    R.W.K. Ulm, Influence of atmospheric humidity and temperature on the moisture content of paper and board, Paper Trade J. 66:108 (1938).Google Scholar
  35. 35.
    G. Schricker, Versandschachteln aus Vollpappe und Wellpappe. Verpack-ungs Rundschau. Techn. wiss. Beilage 10:25 (1959).Google Scholar
  36. 36.
    R.E. Benson, Effects of relative humidity and temperature on tensile stress-strain properties of kraft linerboard, Tappi 54:699 (1971).Google Scholar
  37. 37.
    V.T. Stannett and J.L. Williams, The transport of water in cellulosic materials, in: “Fibre Water Interactions in Paper Making,” Trans. of the Symposium held at Oxford, Sept. 1977, Fundamental Research Committee: Technical Division of the British Paper and Board Industry Federation, London (1978).Google Scholar
  38. 38.
    Y.A. Kamiya and F. Takahashi, Effect of water sorption hysteresis on gas transport in a regenerated cellulose, J. Appl. Polym. Sci. 23:627 (1979).CrossRefGoogle Scholar
  39. 39.
    H. Weisser and F. Liebenspacher, Determination of water content and moisture sorption isotherms of cellulosic packaging material, in: “Food Properties and Computer Aided Engineering of Food Processing Systems,” R.P. Singh and A.G. Medina, eds., Kluwer, Dordrecht (1989).Google Scholar
  40. 40.
    F. Liebenspacher and H. Weisser, Sorptionsisothermen von Papier und Zellglas, Verpackungs Rundschau. Techn. wiss. Beilage 40:6 (1989).Google Scholar
  41. 41.
    R. Heiss, “Haltbarkeit und Sorptionsverhalten wasserarmer Lebensmittel,” Springer, Berlin (1968).CrossRefGoogle Scholar
  42. 42.
    T.C. Farrar and E.D. Becker, “Pulse and Fourier Transform NMR,” Academic Press, New York (1971).Google Scholar
  43. 43.
    S.J. Richardson and M.P. Steinberg, Applications of nuclear magnetic resonance, in: “Water Activity: Theory and Applications to Food,” L.B. Rockland and L.R. Beuchat, eds., Marcel Dekker, New York (1987).Google Scholar
  44. 44.
    W.E.L. Spiess and W.R. Wolf, The results of the COST90 project on water activity, in: “Physical Properties of Foods,” R. Jowitt, F. Escher, B. Hallström, H.F. Meffert, W.E.L. Spiess, and G. Vos, eds., Elsevier Applied Science, London (1983).Google Scholar
  45. 45.
    W.E.L. Spiess and W. Wolf, Critical evaluation of methods to determine moistore sorption isotherms, in: “Water Activity: Theory and Applications to Food,” L.B. Rockland and L.R. Beuchat, eds., Marcel Dekker, New York (1987).Google Scholar
  46. 46.
    W. Wolf, W.E.L. Spiess, G. Jung, H. Weisser, H. Bizot, and R.B. Duckworth, The water-vapour sorption isotherms of microcrystalline cellulose (MCC) and of purified potato starch. Results of a collaborative study, J. Food Engng. 3:51 (1984).CrossRefGoogle Scholar
  47. 47.
    H. Weisser, NMR spectroscopy in the food industry, Bruker Report 9 (1978).Google Scholar
  48. 48.
    H. Weisser and H.-P. Harz, Fortschritte beim Anwenden der Kernresonanz-Spektroskopie in der Lebensmittelverfahrenstechnik, ZFL Int. J. Food Technol. and Food Proc. Engng. 34:20 (1983).Google Scholar
  49. 49.
    H.-P. Harz and H. Weisser, Einsatz von Kernresonanzspektrometern in der Lebensmittelindustrie, ZFL Int. J. Food Technol. and Food Proc. Engng. 37:278 (1987).Google Scholar
  50. 50.
    H.-P. Harz, “Untersuchungen zum Gefrierverhalten flüssiger Lebensmittel im Hinblick auf das Gefrierlagern, Gefriertrocknen und Gefrierkonzentrieren,” Doctoral Thesis, Universität Karlsruhe, Karlsruhe (1987).Google Scholar
  51. 51.
    W. Basler and H. Lechert, Diffusion von Wasser in Stärkegelen, Die Stärke 26:39 (1974).CrossRefGoogle Scholar
  52. 52.
    K.J. Packer and C. Rees, Pulsed NMR studies of restricted diffusion. I. Droplet size distributions in emulsions, J. Colloid Interface Sci. 40:206 (1972).CrossRefGoogle Scholar
  53. 53.
    H.-P. Harz and H. Weisser, Rapid determination of the water content of pulped sugar beet at various processing stages, Bruker Report 17 (1984).Google Scholar
  54. 54.
    C. van den Berg, “Vapour Sorption Equilibria and Other Water-Starch Interactions: A Physico-Chemical Approach,” Doctoral Thesis, Agricultural University Wageningen, Netherlands (1981).Google Scholar
  55. 55.
    C. van den Berg, Development of B.E.T.-like models for sorption of water on foods, theory and relevance, in: “Properties of Water in Foods in Relation to Quality and Stability,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  56. 56.
    K.W. Lang and M. Steinberg, Characterization of polymer and solute bound water by pulsed NMR, J. Food Sci. 48:517 (1983).CrossRefGoogle Scholar
  57. 57.
    H. Lechert, W. Maiwald, R. Köthe, and W.-D. Basler, NMR-study of water in some starches and vegetables, J. Food Proc. Preserv. 3:275 (1980).CrossRefGoogle Scholar
  58. 58.
    H.K. Leung, J.A. Magnuson, and B.L. Bruinsma, Pulsed nuclear magnetic resonance study of water mobility in flour doughs, J. Food Sci. 44:1408 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. Weisser
    • 1
  • F. Liebenspacher
    • 1
  1. 1.Lehrstuhl für Brauereianlagen und Lebensmittel-VerpackungstechnikTechnische Universität MünchenWeihenstephan, Freising 12Germany

Personalised recommendations