Non-Equilibrium Phase Transitions of Aqueous Starch Systems

  • C. G. Biliaderis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)


Experimental data on phase transitions of aqueous starch systems, obtained by thermal analysis (TA) methods, are often indicative of irreversible (non-equilibrium) processes involving various metastable states. The thermal responses usually reflect composite effects from contributions of several opposing processes [e.g. annealing, melting, and (re)crystallization] taking place concurrently during TA. It is important, therefore, to recognize the temperature- and time-dependence of the structure of starch materials, if non-isothermal techniques are used for their characterization. Identifying the pertinent morphological features (supermolecular structure) of each particular system, as well as recognizing the role of water as a plasticizer which depresses the Tg of the amorphous domains, is essential to predict heat/moisture-mediated transformations of this biopolymer. The phase transition behaviour of granular starch and amylose-lipid complexes, as revealed by Differential Scanning Calorimetry and Thermomechanical Analysis, and the metastability of these materials are considered herein with respect to the effects of water and low molecular weight solutes.


Differential Scanning Calorimetry Starch Granule Rice Starch Wheat Starch Starch Gelatinization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Banks and C.T. Greenwood, “Starch and its components,” Halsted Press, New York (1975).Google Scholar
  2. 2.
    D. French, Organization of starch granules, in: “Starch: Chemistry and Technology,” R.L. Whistler, J.N. BeMiller, and E.F. Paschall, eds., Academic Press, New York (1984).Google Scholar
  3. 3.
    J.M.V. Blanshard, The significance of the structure and function of the starch granule in baked products, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).Google Scholar
  4. 4.
    H.F. Zobel, Molecules to granules: A comprehensive starch review, Starch 40:44 (1988).CrossRefGoogle Scholar
  5. 5.
    H.F. Zobel, Gelatinization of starch and mechanical properties of starch pastes, in: “Starch: Chemistry and Technology,” R.L. Whistler, J.N. BeMiller, and E.F. Paschall, eds., Academic Press, New York (1984).Google Scholar
  6. 6.
    D.J. Stevens and G.A.H. Elton, Thermal properties of the starch-water system. Part I. Measurements of heat of gelatinization by differential scanning calorimetry, Starch 23:8 (1971).CrossRefGoogle Scholar
  7. 7.
    J.W. Donovan, Phase transitions of the starch-water system, Biopolymers 18:263 (1979).CrossRefGoogle Scholar
  8. 8.
    C.G. Biliaderis, T.J. Maurice, and J.R. Vose, Starch gelatinization phenomena studied by differential scanning calorimetry, J. Food Sci. 45:1669 (1980).CrossRefGoogle Scholar
  9. 9.
    A.-C. Eliasson, Effect of water content on the gelatinization of wheat starch, Starch 32:270 (1980).CrossRefGoogle Scholar
  10. 10.
    T.J. Maurice, L. Slade, R.R. Sirett, and C.M. Page, Polysaccharidewater interactions — thermal behaviour of rice starch, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht, Netherlands (1985).Google Scholar
  11. 11.
    C.G. Biliaderis, C.M. Page, T.J. Maurice, and B.O. Juliano, Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch, J. Agric. Food Chem. 34:6 (1986).CrossRefGoogle Scholar
  12. 12.
    B.R. Krueger, C.E. Walker, C.A. Knutson, and G.E. Inglett, Differential scanning calorimetry of raw and annealed starch isolated from normal and mutant maize genotypes, Cereal Chem. 64:187 (1987).Google Scholar
  13. 13.
    B.R. Krueger, C.A. Knutson, G.E. Inglett, and C.E. Walker, A differential scanning calorimetry study on the effect of annealing on gelatinization behaviour of corn starch, J. Food Sci. 52:715 (1987).CrossRefGoogle Scholar
  14. 14.
    J.W. Donovan, K. Lorenz, and K. Kulp, Differential scanning calorimetry of heat-moisture treated wheat and potato starches, Cereal Chem. 60:381 (1983).Google Scholar
  15. 15.
    F.R. Jacobsberg and N.W.R. Daniels, Gelatinization properties of high-ratio cake flours, Chem. Ind. 21:1007 (1974).Google Scholar
  16. 16.
    M. Wootton and A. Bamumuarachchi, Application of differential scanning calorimetry to starch gelatinization. III. Effect of sucrose and sodium chloride, Starch 32:126 (1980).CrossRefGoogle Scholar
  17. 17.
    R. Hoover and D. Hadziyev, Characterization of potato starch and its monoglyceride complexes, Starch 33:290 (1981).CrossRefGoogle Scholar
  18. 18.
    I.D. Evans and D.R. Haisman, The effect of solutes on the gelatinization temperature range of potato starch, Starch 34:224 (1982).CrossRefGoogle Scholar
  19. 19.
    A.-C. Eliasson, Differential scanning calorimetry studies of wheat starch-gluten mixtures. I. Effect of gluten on the gelatinization of wheat starch, J. Cereal Sci. 1:199 (1983).CrossRefGoogle Scholar
  20. 20.
    B.M. Gough, P. Greenwell, and P.L. Russell, On the interaction of sodium dodecyl sulphate with starch granules, in: “New Approaches to Research on Cereal Carbohydrates,” R.D. Hill and L. Munck, eds., Elsevier, Amsterdam (1985).Google Scholar
  21. 21.
    C.G. Biliaderis, C.M. Page, and T.J. Maurice, On the multiple melting transitions of starch/monoglyceride systems, Food Chem. 22:279 (1986).CrossRefGoogle Scholar
  22. 22.
    K.J. Zeleznak and R.C. Hoseney, The glass transition of starch, Cereal Chem. 64:121 (1987).Google Scholar
  23. 23.
    L. Slade and H. Levine, Thermal analysis of starch and gelatin, in: “American Chemical Society Meeting,” Fairfield, abs. 152 (1984).Google Scholar
  24. 24.
    L. Slade and H. Levine, Non-equilibrium melting of native granular starch: Part I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches, Carbohydr. Polym. 8:183 (1988).CrossRefGoogle Scholar
  25. 25.
    J.M.V. Blanshard, Starch granule structure and function: a physicochemical approach, in: “Starch: Properties and Potential,” T. Galliard, ed., Society of Chemical Industry, John Wiley & Sons, New York (1987).Google Scholar
  26. 26.
    L. Slade and H. Levine, Recent advances in starch retrogradation, in: “Industrial Polysaccharides,” S.S. Stilva, V. Crescenzi, and I.C.M. Dea, eds., Gordon and Breach Science, New York (1987).Google Scholar
  27. 27.
    P. Colonna and C. Mercier, Gelatinization and melting of maize and pea starches with normal and high-amylose genotypes, Phytochemistry 24:1667 (1985).CrossRefGoogle Scholar
  28. 28.
    H.F. Zobel, S.N. Young, and L.A. Rocca, Starch gelatinization: An X-ray diffraction study, Cereal Chem. 65:443 (1988).Google Scholar
  29. 29.
    M. Kugimiya, J.W. Donovan, and R.Y. Wong, Phase transitions of amylose-lipid complexes: a calorimetric study, Starch 32:265 (1980).CrossRefGoogle Scholar
  30. 30.
    D. Paton, Differential scanning calorimetry of oat starch pastes. Cereal Chem. 64:394 (1987).Google Scholar
  31. 31.
    D.J. Burt and P.L. Russell, Gelatinization of low water content wheat starch-water mixtures, Starch 35:354 (1983).CrossRefGoogle Scholar
  32. 32.
    P.J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Ithaca, New York (1953).Google Scholar
  33. 33.
    J. Lelievre, Theory of gelatinization in a starch-water-solute system. Polymer 17:854 (1976).CrossRefGoogle Scholar
  34. 34.
    J. Lelievre, Starch gelatinization. J. Appl. Polym. Sci. 18:293 (1973).CrossRefGoogle Scholar
  35. 35.
    J.W. Donovan and C.J. Mapes, Multiple phase transitions of starches and Naegeli amylodextrins, Starch 32:190 (1980).CrossRefGoogle Scholar
  36. 36.
    A.H. Muhr, J.M.V. Blanshard, and D.R. Bates, The effect of lintnerization on wheat and potato starch granules, Carbohydr. Polym. 4:399 (1984).CrossRefGoogle Scholar
  37. 37.
    P.J. Russell, Gelatinization of starches of different amylose/amylopectin content. A study by differential scanning calorimetry, J. Cereal Sci. 6:133 (1987).CrossRefGoogle Scholar
  38. 38.
    J.L. Marchant and J.M.V. Blanshard, Studies of the dynamics of the gelatinization of starch granules employing a small angle light scattering system, Starch 30:257 (1978).CrossRefGoogle Scholar
  39. 39.
    T. Shiotsubo and K. Takahashi, Differential thermal analysis of potato starch gelatinization, Agric. Biol. Chem. 48:9 (1984).CrossRefGoogle Scholar
  40. 40.
    C. van den Berg, Vapor sorption equilibria and other water-starch interactions: A physicochemical approach, Doctoral Thesis, Agricultural University, Wageningen (1981).Google Scholar
  41. 41.
    L. Slade, Starch properties of processed foods: Staling of starch-based products, in: “AACC 69th Ann. Meet.,” Minneapolis, abs. 112 (1984).Google Scholar
  42. 42.
    G.M. Irvine, The glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis, Tappi 67:118 (1984).Google Scholar
  43. 43.
    D.C.W. Morley, The glass transition in linear polymers, J. Materials Sci. 9:619 (1974).CrossRefGoogle Scholar
  44. 44.
    C.L. Beatty and F.E. Karasz, The glass transition of linear polyethylene, J. Macromol. Sci.-Rev. Macromol. Chem. C17:37 (1979).CrossRefGoogle Scholar
  45. 45.
    T.S. Ellis, X. Jin, and F.E. Karasz, The water plasticization behaviour of semi-crystalline polyamides, Polym. Prepr. 25:197 (1984).Google Scholar
  46. 46.
    X. Jin, T.S. Ellis, and F.E. Karasz, The effect of crystallinity and cross-linking on the depression of the glass transition temperature in Nylon 6 by water, J. Polym. Sci. 22:1701 (1984).Google Scholar
  47. 47.
    G. ten Brinke, F.E. Karasz, and T.S. Ellis, Depression of glass transition temperatures of polymer networks by diluents, Macromolecules 16:244 (1983).CrossRefGoogle Scholar
  48. 48.
    P.D. Orford, R. Parker, S.G. Ring, and A.C. Smith, The effect of water as a diluent on the glass transition behaviour of malto-oligosaccharides, amylose and amylopectin, Int. J. Biol. Macromol. 11:91 (1989).CrossRefGoogle Scholar
  49. 49.
    G.E. Wissler and B. Crist, Glass transition in semicrystalline polycarbonate, J. Polym. Sci. 18:1257 (1980).Google Scholar
  50. 50.
    D.E. Kirkpatrick and B. Wunderlich, Thermal analysis of the phase transitions of poly(p-xylene), Makromol. Chem. 186:2595 (1985).CrossRefGoogle Scholar
  51. 51.
    J.M.G. Cowie, P.M. Toporowski, and F. Costaschuk, Makromol. Chem. 121:51 (1969), as cited in ref. 48.Google Scholar
  52. 52.
    S. Nakamura and A.V. Tobolsky, Viscoelastic properties of plasticized amylose films, J. Appl. Polym. Sci. 11:1371 (1967).CrossRefGoogle Scholar
  53. 53.
    D.H. Desai, C.K. Patel, K.C. Patel, and R.D. Patel, Differential scanning calorimetry: Study of amylose and its derivatives, Starch 25:162 (1973).CrossRefGoogle Scholar
  54. 54.
    R.D.L. Marsh and J.M.V. Blanshard, The application of polymer crystal growth theory to the kinetics of formation of the B-amylose polymorph in a 50% wheat starch gel, Carbohydr. Polvm. 9:301 (1988).CrossRefGoogle Scholar
  55. 55.
    J.N. BeMiller and G.W. Pratt, Sorption of water, sodium sulfate and water-soluble alcohols by starch granules in aqueous suspension, Cereal Chem. 58:517 (1981).Google Scholar
  56. 56.
    L. Mandelkern, M. Glotin, and R.A. Benson, Supermolecular structure and thermodynamic properties of linear and branched polyethylene under rapid crystallization conditions, Macromolecules 14:22 (1981).CrossRefGoogle Scholar
  57. 57.
    B. Wunderlich, The basis of thermal analysis, in: “Thermal Characterization of Polymeric Materials,” E.A. Turi, ed., Academic Press, New York (1981).Google Scholar
  58. 58.
    C.G. Biliaderis, C.M. Page, L. Slade, and R.R. Sirett, Thermal behaviour of amylose-lipid complexes, Carbohydr. Polym. 5:367 (1985).CrossRefGoogle Scholar
  59. 59.
    C.G. Biliaderis, C.M. Page, and T.J. Maurice, Non-equilibrium melting of amylose-V complexes, Carbohydr. Polym. 6:269 (1986).CrossRefGoogle Scholar
  60. 60.
    C.G. Biliaderis and G. Galloway, Crystallization behaviour of amylose-V complexes: Structure-property relationships, Carbohydr. Res. 189:31 (1989).CrossRefGoogle Scholar
  61. 61.
    C.G. Biliaderis and H.D. Seneviratne, On the supermolecular structure and metastability of glycerol monostearate-amylose complex, Carbohydr. Polym. 13:185 (1990).CrossRefGoogle Scholar
  62. 62.
    J.W. Donovan, Phase transitions of waxy maize amylodextrins and stability of amylopectin crystallites in starch, in: “American Chemical Society Meeting,” Philadelphia (1984).Google Scholar
  63. 63.
    R.C. Roberts and F.R. Sherliker, Apparent anomalous thermal behaviour of polymers undergoing a glass transition, J. Polym. Sci. 13:2069 (1969).Google Scholar
  64. 64.
    F.F. Mikus, R.M. Hixon, and R.E. Rundle, The complexes of fatty acids with amylose, J. Amer. Chem. Soc. 68:1115 (1946).CrossRefGoogle Scholar
  65. 65.
    R.E. Rundle and F.C. Edwards, The configuration of starch in the starch-iodine complex, IV. An X-ray diffraction investigation of butanol precipitated amylose, J. Amer. Chem. Soc. 65:2200 (1943).CrossRefGoogle Scholar
  66. 66.
    G. Rappenecker and P. Zugenmaier, Detailed refinement of the crystal structure of Vh-amylose, Carbohydr. Res. 89:11 (1981).CrossRefGoogle Scholar
  67. 67.
    W.R. Morrison, Lipids in cereal starches, in: “New Approaches to Research on Cereal Carbohydrates,” R.D. Hill and L. Munck, eds., Elsevier, Amsterdam (1985).Google Scholar
  68. 68.
    A.-C. Eliasson and N. Krog, Physical properties of amylose-monoglyceride complexes, J. Cereal Sci. 3:239 (1985).CrossRefGoogle Scholar
  69. 69.
    V.R. Stute and G. Koneiczny-Janda, DSC investigations of starches, Part II. Investigations on starch-lipid complexes, Starch 35:340 (1983).CrossRefGoogle Scholar
  70. 70.
    M. Kugimiya and J.W. Donovan, Calorimetric determination of the amylose content of starches based on the formation and melting of amylose-lysolecithin complex, J. Food Sci. 46:765 (1981).CrossRefGoogle Scholar
  71. 71.
    P.V. Bulpin, E.J. Welsh, and E.R. Morris, Physical characterization of amylose-fatty acid complexes in starch granules and in solution, Starch 34:335 (1982).CrossRefGoogle Scholar
  72. 72.
    M. Kowblansky, Calorimetric investigation of inclusion complexes of amylose with long-chain aliphatic compounds containing different functional groups. Macromolecules 18:1776 (1985).CrossRefGoogle Scholar
  73. 73.
    I.D. Evans, An investigation of starch/surfactant interactions using viscometry and differential scanning calorimetry, Starch 38:227 (1986).CrossRefGoogle Scholar
  74. 74.
    A.-C. Eliasson, A study of starch-lipid interactions for some native and modified maize starches, Starch 40:95 (1988).CrossRefGoogle Scholar
  75. 75.
    A.-C. Eliasson, On the thermal transitions of the amylose-cetyltrimethylammonium bromide complex, Carbohydr. Res. 172:83 (1988).CrossRefGoogle Scholar
  76. 76.
    S. Raphaelides and J. Karkalas, Thermal dissociation of amylose-fatty acid complexes, Carbohydr. Res. 172:65 (1988).CrossRefGoogle Scholar
  77. 77.
    B. Wunderlich, “Macromolecular Physics,” Vol. 2, Crystal Nucleation, Growth, Annealing, Academic Press, New York (1976).Google Scholar
  78. 78.
    R.D. Spies and R.C. Hoseney, Effect of sugar on starch gelatinization, Cereal Chem. 59:128 (1982).Google Scholar
  79. 79.
    P.H. von Hippel and T. Schleich, The effects of neutral salts on the structure and conformational stability of macromolecules in solution, in: “Structure and Stability of Biological Macromolecules in Solution,” S.N. Timasheff and G.D. Fasman, eds., Marcel Dekker, New York, (1969).Google Scholar
  80. 80.
    B. Wunderlich, “Macromolecular Physics,” Vol. 3, Crystal Melting, Academic Press, New York (1980).Google Scholar
  81. 81.
    R.S.J. Manley, Chain folding in amylose crystals, J. Polym. Sci. Part A 2:4503 (1964).Google Scholar
  82. 82.
    Y. Yamashita, Single crystals of amylose-V complexes. J. Polym. Sci. Part A 3:3251 (1965).Google Scholar
  83. 83.
    H.F. Zobel, A.D. French, and M.E. Hinkle, X-ray diffraction of oriented amylose fibers. II. Structure of V amyloses, Biopolymers 5:837 (1967).CrossRefGoogle Scholar
  84. 84.
    A. Buleon, F. Duprat, F.P. Booy, and H. Chanzy, Single crystals of amylose with low degree of polymerization, Carbohydr. Polym. 4:161 (1984).CrossRefGoogle Scholar
  85. 85.
    J. Jane and J.F. Robyt, Structure studies of amylose-V complexes and retrograded amylose by action of α-amylases, and a new method for preparing amylodextrins, Carbohydr. Res. 132:105 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • C. G. Biliaderis
    • 1
  1. 1.Food Science DepartmentUniversity of ManitobaWinnipegCanada

Personalised recommendations