Vitreous Domains in an Aqueous Ribose Solution

  • John M. Wasylyk
  • John G. Baust
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)


Aqueous solutions containing d-ribose demonstrate the ability to form more than one vitreous domain when exposed to low temperatures. Differential scanning calorimetry revealed two glass transitions (at Tgs of −63 and −43°C) upon cooling and warming at a constant rate of 5°C·min−1. The bulk water of the solution crystallizes at −18°C (Tc). Heat capacity and enthalpy changes, and the derivatives for each thermal event, are calculated. Relaxation studies on the observed Tgs produced anticipated overshoots characteristic of the presence of glassy states.


Glass Transition Differential Scanning Calorimetric Glassy State Subzero Temperature Heat Flow Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Uhlmann, A kinetic treatment of glass formation, J. Non-Crystal. Solids 7:337 (1972).CrossRefGoogle Scholar
  2. 2.
    F. Franks, The properties of aqueous solutions at subzero temperatures, in: “Water: A Comprehensive Treatise,” F. Franks, ed., Vol. 7, Plenum Press, New York (1982).Google Scholar
  3. 3.
    A. Suggett, Polysaccharides, in: “Water: A Comprehensive Treatise,” F. Franks, ed., Vol. 4, Plenum Press, New York (1975).Google Scholar
  4. 4.
    F. Franks, D.S. Reid, and A. Suggett, Conformation and hydration of sugars and related compounds in dilute aqueous solution, J. Solution Chem. 2:99 (1973).CrossRefGoogle Scholar
  5. 5.
    B. Luyet and D. Rasmussen, Study by differential thermal analysis of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose, Biodynamica 10:167 (1968).Google Scholar
  6. 6.
    M. Jochem and C. Korber, Extended phase diagrams for the ternary solutions H2O-NaCl-glycerol and H2O-NaCl-HES determined by DSC, Cryobiology 24:513 (1987).CrossRefGoogle Scholar
  7. 7.
    D. Rasmussen and B. Luyet, Complementary study of some nonequilibrium phase transitions in frozen solutions of glycerol, ethylene glycol, glucose, and sucrose, Biodynamica 10:319 (1969).Google Scholar
  8. 8.
    D.R. MacFarlane and C.A. Angell, Nonexistent glass transition for amorphous solid water, J. Phys. Chem. 88:759 (1984).CrossRefGoogle Scholar
  9. 9.
    D.R. MacFarlane, Anomalous glass transitions in aqueous propylene glycol solutions, Cryo-Lett. 6:313 (1985).Google Scholar
  10. 10.
    L. Slade and H. Levine, Non-equilibrium behavior of small carbohydratewater systems, Pure Appl. Chem. 60:1841 (1988).CrossRefGoogle Scholar
  11. 11.
    R. Vassoille, A. El Hachadi, and G. Vigier, Study by means of internal friction measurements of the vitreous transition in aqueous 1,2-propanediol solution, Cryo-Lett. 7:305 (1985).Google Scholar
  12. 12.
    C.A. Angell and E.J. Sare, Liquid-liquid immiscibility in common aqueous salt solutions at low temperatures, J. Chem. Phys. 49:4713 (1968).CrossRefGoogle Scholar
  13. 13.
    H. Kanno, Double glass transitions in aqueous lithium chloride solutions vitrified at high pressures: evidence for a liquid-liquid immiscibility. J. Phvs. Chem. 91:1967 (1987).CrossRefGoogle Scholar
  14. 14.
    R. Jankowiak, G.J. Small, and K.B. Athreya, Derivative of the density of states and distribution functions for two-level systems in glasses, J. Phys. Chem. 90:3896 (1986).CrossRefGoogle Scholar
  15. 15.
    M.A. DeBolt, A.J. Easteal, P.B. Macedo, and C.T. Moynihan, Analysis of structural relaxation in glass using rate heating data, J. Am. Ceram. Soc. 59:16 (1976).CrossRefGoogle Scholar
  16. 16.
    A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, and A.R. Ramos, Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory, J. Polym. Sci. Polym. Phys. Ed. 17:1097 (1979).CrossRefGoogle Scholar
  17. 17.
    C.A. Angell and J.C. Tucker, Heat capacity changes in glass-forming aqueous solutions and the glass transition in vitreous water, J. Phys. Chem. 84:762 (1980).Google Scholar
  18. 18.
    I.M. Hodge and A.R. Berens, Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling, Macromolecules 15:762 (1982).CrossRefGoogle Scholar
  19. 19.
    A. Suggett and A.H. Clark, Molecular motion and interactions in aqueous carbohydrate solutions. I. Dielectric-relaxation studies, J. Solution Chem. 5:1 (1976).CrossRefGoogle Scholar
  20. 20.
    A. Suggett, Molecular motion and interactions in aqueous carbohydrate solutions. III. A combined nuclear magnetic and dielectric-relaxation strategy. J. Solution Chem. 5:33 (1976).CrossRefGoogle Scholar
  21. 21.
    R. Vassoille, G. Vigier, A. El Hachadi, G. Thollet, and J. Perez, Vitreous state decomposition study in some aqueous polyalcohol solutions, J. Physique Cl:471 (1987).Google Scholar
  22. 22.
    D.S. Reid, A.T. Foin, and C.A. Lern, The effect of solutes on the temperature of heterogeneous nucleation of ice from aqueous solution, Cryo-Lett. 6:81 (1985).Google Scholar
  23. 23.
    P. Boutron, A. Kaufmann, and N. Van Dang, Maximum in the stability of the amorphous state in the system water-glycerol-ethanol, Cryobiology 16:372 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • John M. Wasylyk
    • 1
  • John G. Baust
    • 1
  1. 1.Center for Cryobiological ResearchState University of New YorkBinghamtonUSA

Personalised recommendations