Thermal Analysis of Water-Containing Systems

  • Timothy W. Schenz
  • Braden Israel
  • Mary Ann Rosolen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)


Thermal analytical techniques offer many advantages in investigations of water-containing systems. This paper will review some of the methodologies used by us in studying food systems:
  1. 1)

    Differential Scanning Calorimetry (DSC): for determining freezable water, melting point, Tg′ (see text), etc.

  2. 2)

    ThermoMechanical Analysis (TMA): for determining softening points as a function of water content, dilatometry and glass transition temperatures.

  3. 3)

    ThermoGravimetric Analysis (TGA): for investigating water uptake curves and water content determination.

  4. 4)

    Dynamic Mechanical Analysis (DMA): for the determination of low-energy transitions.



Differential Scanning Calorimetry Dynamic Mechanical Analysis State Diagram Differential Scanning Calorimetry Thermogram Rice Starch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Franks, The properties of aqueous solutions at subzero temperatures, in: “Water: A Comprehensive Treatise,” Vol. 7, F. Franks, ed., Plenum Press, New York (1982).Google Scholar
  2. 2.
    T.W. Schenz, Glasses in aqueous systems, at 24th Soc. Cryobiology Mtg., Edmonton, Alberta (1987).Google Scholar
  3. 3.
    T.W. Schenz, M.A. Rosolen, H. Levine, and L. Slade, DMA of frozen aqueous solutions, In: “Proceedings of the 13th NATAS Conference,” A.R. McGhie, ed., NATAS, Philadelphia (1984).Google Scholar
  4. 4.
    J. Pouchly, J. Biros, and S. Benes, Heat capacities of water swollen hydrophilic polymers above and below 0°C, Makromol. Chem. 180:745 (1979).CrossRefGoogle Scholar
  5. 5.
    A.B. Biswas, C.A. Kumsah, G. Pass, and G.O. Phillips, Effect of carbohydrates on the heat of fusion of water, J. Sol’n. Chem. 4:581 (1975).CrossRefGoogle Scholar
  6. 6.
    K. Gekko and I. Satake, Differential scanning calorimetry of unfreezable water in water-protein-polyol systems, Agric. Biol. Chem. 45:2209 (1981).CrossRefGoogle Scholar
  7. 7.
    A.R. Haly and J.W. Snaith, Calorimetry of rat tail tendon collagen before and after denaturation. Heat of fusion of its absorbed water, Biopolymers 10:1681 (1971).CrossRefGoogle Scholar
  8. 8.
    H. Levine and L. Slade, Principles of cryostabilization technology from structure/property relationships of carbohydrate/water systems — a review, Cryo-Letters 9:21 (1988).Google Scholar
  9. 9.
    C.G. Biliaderis, C.M. Page, T.J. Maurice, and B.O. Juliano, Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch, J. Agric. Food Chem. 34:6 (1986).CrossRefGoogle Scholar
  10. 10.
    H. Levine and L. Slade, A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs), Carbohydr. Polym. 6:213 (1986).Google Scholar
  11. 11.
    H. Levine and L. Slade, Non-equilibrium behavior of small carbohydrate-water systems, Pure & Appl. Chem. 60:1841 (1988).CrossRefGoogle Scholar
  12. 12.
    H.H. El-Shattawy, D.O. Kildsig, and G.E. Peck, Differential scanning calorimetry of aspartame-caffeine mixture, Drug Devel. & Indust. Pharm. 8:651 (1982).CrossRefGoogle Scholar
  13. 13.
    W.O. Emery and C.D. Wright, Distribution of certain drugs between immiscible solvents, J. Amer. Chem. Soc. 43:2323 (1921).CrossRefGoogle Scholar
  14. 14.
    F. Franks, Unfrozen water: yes; unfreezable water: hardly; bound water: certainly not. Cryo-Letters 7:207 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Timothy W. Schenz
    • 1
  • Braden Israel
    • 1
  • Mary Ann Rosolen
    • 2
  1. 1.Ross DivisionAbbott LaboratoriesColumbusUSA
  2. 2.General Foods USATarrytownUSA

Personalised recommendations