Hydration Phenomena: An Update and Implications for the Food Processing Industry

  • Felix Franks
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 302)


The past decade has witnessed major revisions in our perception of the manner in which water affects the physical, chemical, and microbiological attributes of all manner of food-related systems. The growing realization that, during processing, most such systems are brought to, and maintained in, a state of thermodynamic instability is focussing attention on the dynamics of the various components in such systems. Older, equilibrium-based concepts, such as “water activity,” equilibrium moisture sorption, and “bound” water are being discarded in favour of more appropriate descriptions, in terms of diffusion, nucleation, crystallization and relaxation rates, glass/rubber transitions, and steady states. It is being realized that food processing, materials science, and polymer technology have much in common, with water being the universal plasticizer of naturally occurring organic materials which form the basis of food products.


Food Processing Industry Kinetic Steady State Molar Free Energy Relative Vapour Pressure Sorption Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.J. Scott, Water relations of food spoilage microorganisms, Adv. Food Res. 7:83 (1957).CrossRefGoogle Scholar
  2. 2.
    F. Franks, Water activity as a measure of biological viability and technological quality control. Cereals Food World 27:403 (1982).Google Scholar
  3. 3.
    R.B. Duckworth, ed., “Water Relations of Foods,” Academic Press, London (1974).Google Scholar
  4. 4.
    F. Franks, ed., “Water Science Reviews,” Vols. 1–5, Cambridge University Press, Cambridge (1985–1990).CrossRefGoogle Scholar
  5. 5.
    “The Hydrophobic Interaction,” Faraday Symp. Chem. Soc. No. 17 (1982).Google Scholar
  6. 6.
    J.L. Finney, J.E. Quinn, and J.O. Baum, The water dimer potential surface, in: “Water Science Reviews,” Vol. 1, F. Franks, ed., Cambridge University Press, Cambridge (1985).Google Scholar
  7. 7.
    J. Dore, Structural studies of water by neutron diffraction, in: “Water Science Reviews,” Vol. 1, F. Franks, ed., Cambridge University Press, Cambridge (1985).Google Scholar
  8. 8.
    J.E. Enderby and G.W. Neilson, X-ray and neutron scattering by aqueous solutions of electrolytes, in: “Water — A Comprehensive Treatise,” Vol. 6, F. Franks, ed., Plenum Press, New York (1979).Google Scholar
  9. 9.
    K. Miyajima, M. Sawada, and M. Hakagaki, Studies on aqueous solutions of saccharides. I. Activity coefficients of monosaccharides in aqueous solution at 25°C, Bull. Chem. Soc. Japan 56:1620 (1983).CrossRefGoogle Scholar
  10. 10.
    R.S. Shallenberger, “Advanced Sugar Chemistry,” Ellis Horwood, Chichester (1982).Google Scholar
  11. 11.
    T.W. Rademacher, R.B. Parekh, and R.A. Dwek, Glycobiology, Ann. Rev. Biochem. 57:785 (1988).CrossRefGoogle Scholar
  12. 12.
    D.B. Davies, personal communication.Google Scholar
  13. 13.
    F. Franks, R.L. Kay, and J. Dadok, A nuclear magnetic resonance study of isomeric pentitols in aqueous and non-aqueous solutions, J. Chem Soc. Faraday Trans. I 84:2595 (1988).CrossRefGoogle Scholar
  14. 14.
    G.A. Jeffrey, Conformational studies in the solid state: extrapolation to molecules in solution, Adv. Chem. Ser. No. 117:177 (1973).Google Scholar
  15. 15.
    J.R. Grigera, Conformation of polyols in water. Molecular dynamics simulation of mannitol and sorbitol, J. Chem. Soc. Faraday Trans. I 84:2603 (1988).CrossRefGoogle Scholar
  16. 16.
    F. Franks, Physical chemistry of small carbohydrates: equilibrium properties. Pure Appl. Chem. 59:1189 (1987).CrossRefGoogle Scholar
  17. 17.
    S.J. Angyal, The composition of reducing sugars in solution, Adv. Carbohydrate Chem. Biochem. 42:15 (1984).CrossRefGoogle Scholar
  18. 18.
    F. Franks, P.J. Lillford, and G. Robinson, Isomeric equilibria of monosaccharides in solution. Influence of temperature and solvent, J. Chem. Soc. Faradav Trans. I 85:2417 (1989).CrossRefGoogle Scholar
  19. 19.
    K. Bock and R.U. Lemieux, The conformational properties of sucrose in aqueous solution: intramolecular hydrogen bonding, Carbohydr. Res. 100:63 (1982).CrossRefGoogle Scholar
  20. 20.
    F. Franks and J.R. Grigera, Hydration properties of small carbohydrates, in: “Water Science Reviews,” Vol. 5, F. Franks, ed., Cambridge University Press, Cambridge (1990).CrossRefGoogle Scholar
  21. 21.
    P. Molyneux, Synthetic polymers, in: “Water — A Comprehensive Treatise,” Vol. 4, F. Franks, ed., Plenum Press, New York (1975).Google Scholar
  22. 22.
    F. Franks and T. Wakabayashi, Heat capacities of undercooled aqueous solutions of polyvinylpyrrolidone, Z. phys. Chem. N.F. 155:171 (1987).CrossRefGoogle Scholar
  23. 23.
    B. Chen and J.A. Schellman, Low temperature unfolding of a mutant of Phage T4 lysozyme, Biochemistry 28:685 (1989).CrossRefGoogle Scholar
  24. 24.
    F. Hofmeister, Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 24:247 (1888).CrossRefGoogle Scholar
  25. 25.
    J.F. Brandts and L. Hunt, The thermodynamics of protein denaturation, J. Amer. Chem. Soc. 89:4826 (1967).CrossRefGoogle Scholar
  26. 26.
    F. Franks and J.E. Desnoyers, Alcohol-water mixtures revisited, in: “Water Science Reviews,” Vol. 1, F. Franks, ed., Cambridge University Press, Cambridge (1985).Google Scholar
  27. 27.
    C. Myers, personal communication.Google Scholar
  28. 28.
    G.N. Lewis and M. Randall, “Thermodynamics,” 2nd edn., McGraw-Hill, New York (1961).Google Scholar
  29. 29.
    H. Levine and L. Slade, Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems, in: “Water Science Reviews,” Vol. 3, F. Franks, ed., Cambridge University Press, Cambridge (1988).Google Scholar
  30. 30.
    S. Brunauer, P.H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Amer. Chem. Soc. 60:309 (1938).CrossRefGoogle Scholar
  31. 31.
    W. Wolf, W.E.L. Spiess, and G. Jung, “Sorption Isotherms and Water Activity of Food Materials,” Science & Technology Publishers, Hornchurch (1985).Google Scholar
  32. 32.
    T.P. Labuza, Water binding of humectants, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).Google Scholar
  33. 33.
    D. Simatos, M. Faure, E. Bonjour, and M. Couach, Differential thermal analysis and differential scanning calorimetry in the study of water in foods, in “Water Relations of Foods,” R.B. Duckworth, ed., Academic Press, London (1974).Google Scholar
  34. 34.
    J. Pouchly, J. Biros, and S. Benes, Heat capacities of water-swollen hydrophilic polymers above and below 0°C, Makromol. Chem. 180:745 (1979).CrossRefGoogle Scholar
  35. 35.
    F. Franks, “Biophysics and Biochemistry at Low Temperatures,” Cambridge University Press, Cambridge (1985).Google Scholar
  36. 36.
    F. Franks, Improved freeze-drying: an analysis of the basic scientific principles, Process Biochem. 24:S3 (1989).Google Scholar
  37. 37.
    Ph. Larrat, “Freeze Drying: Definition/General Principles/Parameters,” Soc. Usifroid, Maurepas.Google Scholar
  38. 38.
    N. Murase and F. Franks, Salt precipitation during the freeze-concentration of phosphate buffer solutions, Biophys. Chem. 34:293 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Felix Franks
    • 1
    • 2
  1. 1.Biopreservation DivisionPafra Ltd.CambridgeUK
  2. 2.Girton CollegeCambridgeUK

Personalised recommendations