Advertisement

Characteristics of Synchrotron Radiation

  • E. Burattini
Part of the NATO ASI Series book series (NSSB, volume 242)

Abstract

When relativistic electrons experience centripetal acceleration due to the presence of a magnetic field, they emit electromagnetic waves that are commonly called “synchrotron radiation” because first observed in the visible region, at the 70 MeV small electrosynchrotron, by a research group working in 1947 at the General Electric Research Laboratory (Schenectady — N.Y.).

Keywords

Synchrotron Radiation Storage Ring Orbital Plane Instantaneous Power Synchrotron Radiation Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ivanenko and J. Pomeranchuk, Phys. Rev. 65:343 (1944).ADSCrossRefGoogle Scholar
  2. 2.
    D. Ivanenko and A.A. Sokolov, Poke. Akad. Neuk. 59:1551 (1948).zbMATHGoogle Scholar
  3. 3.
    R.P. Madden and K. Codling, Phys. Rev. Lett. 10:516 (1963).ADSCrossRefGoogle Scholar
  4. 4.
    L.G. Parrat, Rev. Sci. Instrum. 30:297 (1959).ADSCrossRefGoogle Scholar
  5. 5.
    P. Jaeglé, G. Missoni, and P. Dhez, Study of the Absorption of Ultrasoft X-rays by Bismuth and Lead using the Orbit Radiation of the Frascati Synchrotron, Phys. Rev. Lett., Vol.18, 21:887 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    P. Jaeglé, F. Combet-Farnaux, P. Dhez, M. Cremonese, G. Onori, Experimental and Theoretical Study of the Absorption of Ultra-Soft X-rays in Platinum and Tantalium, Phys. Lett. 26A, 8:364 (1968).ADSGoogle Scholar
  7. 7.
    E.E. Koch, Nucl. Instrum. Methods 177:7 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    C. Kunz, Perspective of Synchrotron Radiation in: “Vacuum Ultraviolet Radiation Physics”, p.753, Viewey Pergamon Braunschweig (1979).Google Scholar
  9. 9.
    V. Rehn, Nucl. Instrum. Methods 177:193 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    E.M. Rowe, “Phys. Today”, p.28 (1981).Google Scholar
  11. 11.
    M. Belli, A. Scafati, A. Bianconi, E. Burattini, S. Mobilio, C.R. Natoli, L. Palladino, A. Reale, EXAFS and XANES Structure Determination of Mn +2 Binding in ATP Complexes, Il Nuovo Cimento Vol.2D, No.5:1281–1304 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    A. Bianconi, A. Congiu-Castellano, M. Dell’Ariccia, A. Giovannelli, P.J. Durham, E. Burattini, and M. Barteri, XANES Study of Iron Displacement in the Haem of Myoglobin, FEBS Letters 1:2039 (1984).Google Scholar
  13. 13.
    A. Heuberger, H. Betz, and G. Pongratz, Present Status and Problems of X-ray Lithography, Festkörper probleme — Adv. in Solid State Phys. 19:259, Vieweg Braunschweig (1980).CrossRefGoogle Scholar
  14. 14.
    M. Yoshimatsu and S. Kozaki, “High Brilliance X-ray Source — X-ray Optics”, Springer Verlag, Berlin-Heidelberg-New York, 9, 1977.Google Scholar
  15. 15.
    J.M. Kenney, C. Jacobsen, J. Kirz, M. Rarback, F. Cinotti, W. Thomlinson, R. Rosser, G. Schidlowsky, Absorption Microanalysis with a Scanning Soft X-ray Microscope, Journal of Microscopy 138:321 (1984).CrossRefGoogle Scholar
  16. 16.
    E. Burattini, Synchrotron Radiation Applications in Biophysics and Medicine, Physics in Environmental and Biomédical Research 23-31, World Scientific Publishing (1986).Google Scholar
  17. 17.
    A. Akisada, M. Ando, K. Hyodo, A. Maruhashi, M.A. Kisada, K. Konishi, F. Toyofuku, K. Nishimura, S. Hasegawa, A. Suwa, K. Korha, An Attempt at Coronary Angiography with a Large Size Monochromatic SR Beam, Nucl. Instrum. Methods A246:713 (1986).ADSGoogle Scholar
  18. 18.
    E. Rubenstein, E.B. Hughes, L.E. Campbell, R. Hofstadter, R.L. Kirk, T.J. Krolicki, J.P. Stone, S. Wilson, H.D. Zeman, W.R. Brody, A. Macowsky, and A.C. Thompson, SPTE 314:42 (1981).Google Scholar
  19. 19.
    R. Becker, “Teoria dell’elettricitá”, Vol. I, II, Sansoni Edizioni Scientifiche — Firenze (1950).Google Scholar
  20. 20.
    A. Sommerfeld, “Elettrodinamica”, Sanzoni Edizioni Scientifiche, Firenze (1950).Google Scholar
  21. 21.
    R.P. Godwin, Springer Tracts, Modem Physics 51:1–73 (1968).Google Scholar
  22. 22.
    J.D. Jackson, “Classical Electrodynamics”, Wiley, New York (1975).zbMATHGoogle Scholar
  23. 23.
    A.A. Sokolov and I.M. Ternov, “Synchrotron Radiation”, Pergamon Press, New York (1968).Google Scholar
  24. 24.
    A.A. Sokolov and I.M. Ternov, “Radiation from Relativistic Electrons”, American Institute of Physics, New York (1968).Google Scholar
  25. 25.
    E.E. Koch, “Synchrotron Radiation”, Vol. 1a, North Holland Publishing Company (1983).Google Scholar
  26. 26.
    E. Burattini, “Synchrotron Radiation applied to Biophysical and Biochemical Research”, Plenum Press, New York and London 1–27 (1979).CrossRefGoogle Scholar
  27. 27.
    E. Burattini, A. Reale, E. Bernieri, N. Cavallo, A. Morone, M.R. Masello, A. Rinzivillo, G. Dalba, P. Fornasini, C. Mencuccini, Experimental Activity at the Adone Wiggler Facility, Nucl. Instrum. Methods 208:91 (1983).CrossRefGoogle Scholar
  28. 28.
    B. Buras and S. Tazzari, European Synchrotron Radiation Facility, CERN — Geneva (1984).Google Scholar
  29. 29.
    J. Schwinger, Phys. Rev. 70:798 (1946).Google Scholar
  30. 30.
    J. Schwinger, Phys. Rev. 75:1912–25 (1949).MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    H. Winich and S. Doniach, “Synchrotron Radiation Research”, Plenum Press, New York-London (1980).CrossRefGoogle Scholar
  32. 32.
    H. Mott, J. Appl. Phys. 22:527 (1951).ADSCrossRefGoogle Scholar
  33. 33.
    E. Burattini, A. Balerna, E. Benieri, C. Mencuccini, R. Rinzivillo, G. Dalba, P. Fornasini, Adone Wiggler Beam Lines Progress Report, Nucl. Instrum. Methods A246:125 (1986).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • E. Burattini
    • 1
  1. 1.Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di FrascatiCNR — INFNFrascati, RomeItaly

Personalised recommendations