Advertisement

Ultraviolet Mutagenesis

  • Ileana Quinto
  • Massimo Mallardo
  • Maria R. Ruocco
  • Alessandro Arcucci
  • Giuseppe Scala
Part of the NATO ASI Series book series (NSSB, volume 242)

Summary

Ultraviolet radiation is a powerful mutagen in eukaryotes and prokaryotes due to its ability to produce premutational lesions of DNA. Of the damage induced by UV-irradiation of DNA at 260 nm, the cyclobutane-type dipyrimidine and the pyrimidine-pyrimidine (6–4) lesions at sites of adjacent pyrimidines are principal cause of mutations. These bulky lesions greatly modify the structure and function of DNA and cause block of DNA replication and cellular death. Prokaryotic and eukaryotic cells are able to repair the DNA lesions as for example the UV-induced pyrimidine dimers. For example, in E.coli, a set of repair enzymes (uvr A,B,C) recognize and eliminate the length of structurally altered DNA, so that resynthesis of DNA can proceed. Thus, the cell survives unmutated to the DNA damage. If the DNA damage is unrepaired, mutations are fixed thanks to a complex interplay of factors e.g. the site of DNA lesion, the replication machinery and, at least in E.coli, a few UV-inducible cell functions.

This paper reviews the mechanisms of UV mutagenesis in E.coli and mammalian cells together with the qualitative and quantitative analysis of UV-induced mutations.

Keywords

RecA Protein Pyrimidine Dimer Replication Machinery Thymine Dimer LexA Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel, P., Poting, A., Mallick, U., Rahmsdorf, H.J., Schorpp, M., and Herrlich, P., 1986, Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary hunan skin fibroblasts, Molec.Cell.Blol., 6:1760.Google Scholar
  2. Benbow, R.M., Zuccarelli, A.Y., and Sinsheimer, R.L., 1974, A role for single-strand breaks in bacteriophage OK174 genetic recombination, J.Mol.Biol., 88:629.CrossRefGoogle Scholar
  3. Bourre, F., and Sarasin, A., 1983, Targeted mut agenesis of SV40 DNA induced by UV light, Nature, 305:68.ADSCrossRefGoogle Scholar
  4. Brandenburger, A., Godson, G.N., Radman, M., Glickman, B.W., van Sluis, C.A., and Doubleday, O.P., 1981, Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13, Nature, 294:180.ADSCrossRefGoogle Scholar
  5. Brash, D.E., and Haseltine, W.A., 1982, UV-induced mutation hotspots occur at DNA damage hotspots, Nature, 298:189.ADSCrossRefGoogle Scholar
  6. Bridges, B.A., and Woodgate, R., 1984, Mutagenic repair in Escherichia coli X. The umuC gene product may be required for replication past pyrimidine dimers but not for the coding error in UV-mutagenesis, Mol.Gen.Genet., 196:364.CrossRefGoogle Scholar
  7. Bridges, B.A., and Woodgate, R., 1985, Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis, Proc.Natl. Acad. Sci.USA, 82:4193.ADSCrossRefGoogle Scholar
  8. Burckhardt, S.E., Woodgate, R., Scheuermann, R.H., and Echols, H., 1988, UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA, Proc.Natl.Acad.Sci.USA, 85:1811.ADSCrossRefGoogle Scholar
  9. Buscher, M., Rahmsdorf, H.J., Liftin, M., Karin, M., and Herrlich, P., 1988, Activation of the c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element, Oncogene, 3:301.Google Scholar
  10. Cohen, S.P., Resnick, J., and Sussman, R., 1983, Interaction of single-strand binding protein and RecA protein at the single-stranded DNA site, J.Mol.Biol., 167:901.CrossRefGoogle Scholar
  11. Cornelis, J.J., Su, Z.Z., and Rommelaere, J., 1982, Direct and indirect effects of ultraviolet light on the mutagenesis of parvovirus H-1 in human cells, The EMBO J., 1:693.Google Scholar
  12. Coulondre, C., and Miller, J.H., 1977a, Genetic studies of the lac repressor III. Additional correlation of mutational sites with specific aminoacid residues, J.Mol.Biol., 117:525.CrossRefGoogle Scholar
  13. Coulondre, C., and Miller, J.H., 1977b, Genetic studies of the lac repressor IV. Mutagenic specificity in the lacI gene of E.coli J.Mol.Biol., 117:577.Google Scholar
  14. Coulondre, C., Miller, J.H., Farabaugh, P.J., and Gilbert, W., 1978, Molecular basis of base substitution hotspots in the lacI gene of E.coli, Mature, 274:775.ADSCrossRefGoogle Scholar
  15. Craig, N.L., and Roberts, J.W., 1980, E.coli RecA protein-directed cleavage of phage lambda repressor requires polynucleotide, Nature, 283:26.ADSCrossRefGoogle Scholar
  16. Craig, N.L., and Roberts, J.W., 1981, Function of nucleoside triphosphate and polinucleotide in Escherichia coli RecA protein-directed cleavage of phage lambda repressor, J.Biol.Chem., 256:8039.Google Scholar
  17. Das Gupta, U.B., and Sumners, W.C., 1978, Ultraviolet reactivation of herpes simplex virus is mutagenic and inducible in mamnalian cells, Proc.Natl.Acad.Sci.USA, 75:2378.ADSCrossRefGoogle Scholar
  18. Day, R.S. III, and Ziolkowski, C., 1978, Studies on UV-induced viral reversion, Cockayne’s syndrome, and MNNG damage using adenovirus 5, in: “DNA repair mechanisms”, P.C. Hanawalt, E.C. Friedberg and C.F. Fox ed., Academic, New York.Google Scholar
  19. Defais, M., Fauquet, P., Radman, M., and Errera, M., 1971, Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems, Virology, 43:495.CrossRefGoogle Scholar
  20. Defais, M., Caillet-Fauquet, P., Fox, M.S., and Radman, M., 1976, Induction kinetics of mutagenic DNA repair activity in E.coli following ultraviolet irradiation, Mol.Gen.Genet., 148:125.CrossRefGoogle Scholar
  21. Eguchi, Y., Ogawa, T., and Ogawa, H., 1988, Cleavage of bacteriophage O80 CI repressor by RecA protein, J.Mol.Biol., 202:565.CrossRefGoogle Scholar
  22. Fornace, A.J. Jr., Alamo, I. Jr., and Hollaender, M.C., 1988, DNA damage-inducible transcripts in mammalian cells, Proc.Natl.Acad.Sci.USA, 85:8800.ADSCrossRefGoogle Scholar
  23. Gentil, A., Margot, A., and Sarasin, A., 1982, Enhanced reactivation and mutagenesis after transfection of carcinogen-treated monkey kidney cells with UV-irradiated simian virus 40 DNA, Biochimie, 64:693.CrossRefGoogle Scholar
  24. Glickman, B.W., Schaaper, R.M., Haseltine, W.A., Dunn, R.L., and Brash, D.E., 1986, The C-C (6-4)UV photoproduct is mutagenic in Escherichia coli, Proc.Natl.Acad. Sci.USA, 83:6945.ADSCrossRefGoogle Scholar
  25. Herrlich, P., van den Berg, S., Mai, S., Lavi, S., Kaina, B., Stein, B., Ponta, H., and Rahmsdorf, H.J., 1989, Mechanism of the UV response in maranalian cells, in: “Proceedings of the United Kingdom Environmental Mutagen Society/ DNA Repair Network”, Sussex University, Brighton.Google Scholar
  26. Horii, T. Ogawa, T., Nakatani, T., Hase, T., Matsubara, H., and Ogawa, H., 1981, Regulation of SOS functions: purification of E.coli LexA protein and determination of its specific site cleaved by the RecA protein, Cell, 27:515.CrossRefGoogle Scholar
  27. Ichikawa-Ryo, H., and Kondo, S., 1975, Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria, J.Mol.Biol., 97:77.CrossRefGoogle Scholar
  28. Kartasova, T., Ponec, M., and van de Putte, P., 1988, Induction of proteins and mRNAs after UV irradiation of hunan epidermal keratinocytes, Exp.Cell.Res., 174:421.CrossRefGoogle Scholar
  29. Kondo, S., 1969, Mutagenicity versus radiosensitivity in Escherichia coli, in: “Proceedings of the XIIth International Congress on Genetics”, Vol.11.Google Scholar
  30. Lebkowski, J.S., Clancy, S., Miller, J.H., and Calos, M.P., 1985, The LacI shuttle: rapid analysis of the mutagenic specificity of ultraviolet light in hunan cells, Proc.Natl. Acad. Sci.USA., 82:8606.ADSCrossRefGoogle Scholar
  31. Le Clerc, J.E., and Istock, N.L., 1982, Specificity of UV mutagenesis in the lac promoter of M131ac hybrid phage DNA, Nature, 297:596.ADSCrossRefGoogle Scholar
  32. Little, J.W., Edniston, S.H., Pacelli, L.Z., and Mount, D.W., 1980, Cleavage of the Escherichia coli LexA protein by the RecA protease, Proc.Natl.Acad.Sci.USA, 77:3225.ADSCrossRefGoogle Scholar
  33. Lytle, C.D., Goddard, J.G., and Lin, C., 1980, Repair and mutagenesis of herpes simplex virus in UV-irradiated monkey cells, Mutation Res., 70:139.CrossRefGoogle Scholar
  34. Lucke-Huble, C., and Herrlich, P., 1986, Gene amplification in mammalian cells after exposure to ionizing radiation and UV, in: “Radiation carcinogenesis and DNA alterations”, F.J. Burns, A.C. Upton and G. Silini ed., Plenum Press, Amsterdam.Google Scholar
  35. Mallick, U., Rahmsdorf, H.J., Yamamoto, N., Ponta, H., Wegner, R.D., and Herrlich, P., 1982, 12-O-tetradecanoylphorbol 13-aeetate-inducible proteins are synthesized at an increased rate in Bloom syndrome f ibroblasts, Proc.Natl.Acad. Sci.USA, 79:7886.ADSCrossRefGoogle Scholar
  36. Mezzina, M., Gentil, A., and Sarasin, A., 1981, Simian virus 40 as a probe for studying inducible repair functions in mammalian cells, J.Supramol. Struct. Cell.Biochem., 17:121.CrossRefGoogle Scholar
  37. Miller, J.H., 1982, Carcinogens induce targeted mutations, Cell, 31:5.CrossRefGoogle Scholar
  38. Miller, J.H., 1985, Mutagenic specificity of ultraviolet ligt, J.Mol.Biol., 182:45.ADSCrossRefGoogle Scholar
  39. Miura, A., and Tomizawa, J., 1968, Studies on radiation sensitive mutants of E.coli III. Participation of the rec system in induction of mutation by ultraviolet irradiation, Mol. Gen.Genet., 103:1.CrossRefGoogle Scholar
  40. Moore, P.D., Bose, K.K., Rabkin, S.D., and Strauss, B.S., 1981, Sites of termination of in vitro DNA Synthesis on ultraviolet-and N-acetylaminofluorene-treated 0X174 templates by procaryotic and eukaryotic DNA polymerases, Proc.Natl.Acad.Sci.USA, 78:110.ADSCrossRefGoogle Scholar
  41. Mount, D.W., Low, K.B., and Edniston, S., 1972, Dominant mutations (lex) in E.coli K12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations, J.Bacteriol., 112:886.Google Scholar
  42. Quillardet, P., and Devoret, R., 1982, Damaged-site independent mutagenesis of phage lambda produced by inducible error-prone repair, Biochimie, 64:789.CrossRefGoogle Scholar
  43. Quinto, I., and Radman, M., 1987, Carcinogenic potency in rodents versus genotoxic potency in E.coli: a correlation analysis for bifunctional alkylating agents, Mutation Res., 181:235.CrossRefGoogle Scholar
  44. Quinto, I., Tenenbaum, L., and Radman, M., 1990, Genotoxicity profile of monofunctional alkylating agents in E.coli: quantitative correlations with carcinogenic potency in rodents, Mutation Res., 228:177.CrossRefGoogle Scholar
  45. Radman, M., 1974, Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis, in: “Molecular and environnental aspects of mutagenesis”, L. Prakas, F. Sherman, M. Miller, C. Lawrence, and H.W. Tabor ed., Charles C. Thomas Publisher, Springfield.Google Scholar
  46. Rahmsdorf, H., Mallick, U., Ponta, H., and Herrlich, P., 1982, A B-lymphocyte-specific high-turnover protein: constitutive expression in resting B cells and induction of synthesis in proliferating cells, Cell, 29:459.CrossRefGoogle Scholar
  47. Roberts, J.W., Roberts, C.W., and Craig, N.L., 1978, Escherichia coli recA gene product inactivates phage lambda repressor, Proc.Natl.Acad. Sci.USA, 75:4714.ADSCrossRefGoogle Scholar
  48. Roberts, J.W., and Devoret, R., 1983, Lysogenic induction, in: “Lambda II”, R.W. Hendrix, J.W. Roberts, F.W. Stahl, and R.A. Weisberg ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  49. Sarasin, A., and Benoit, A., 1980, Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells, Mutation Res., 70:71.CrossRefGoogle Scholar
  50. Sauer, R.T., Ross, M.J., and Ptashne, M., 1982, Cleavage of the lambda and P22 repressors by RecA protein, J.Biol.Chem., 257:4458.Google Scholar
  51. Schorpp, M., Mallick, U., Rahmsdorf, H.J., and Errlich, P., 1984, UV-induced extracellular factor from human fibroblasts communicates the UV response to nonirradiated cells, Cell, 37:861.CrossRefGoogle Scholar
  52. Setlow, R.B., Swenson, P.A., and Carrier, W.L., 1963, Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells, Science, 142:1464.ADSCrossRefGoogle Scholar
  53. Shinagawa, H., Iwasaki, H., Kato, T., and Nakata, A., 1988, RecA protein dependent cleavage of UmuD protein and SOS mutagenesis, Proc.Natl.Acad.Sci.USA, 85:1806.ADSCrossRefGoogle Scholar
  54. Tenenbaun, L., Quinto I., and Faelen, M., 1988, The E.coli multitest: a set of strains to characterize diverse genotoxic effects, Mutation Res., 203:415.CrossRefGoogle Scholar
  55. Toman, Z., Dambly-Chaudière, C., Tenenbaun, L., and Radnan, M., 1985, A system for detection of genetic and epigenetic alterations in E.coli induced by DNA damaging agents, J.Mol.Biol., 186:97.CrossRefGoogle Scholar
  56. Villani, G., Boiteux, S., and Radnan, M., 1978, Mechanisms of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated tenplates, Proc.Natl.Acad.Sci.USA, 75:3037.ADSCrossRefGoogle Scholar
  57. Walker, G.C., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol.Rev., 48:60.Google Scholar
  58. Weigle, J.J., 1953, Induction of mutation in a bacterial virus, Proc.Natl.Acad. Sci. USA, 39:628.ADSCrossRefGoogle Scholar
  59. Witkin, E.M., 1967, Mutation proof and mutation prone modes of survival in derivatives of E.coli B differing in sensitivity to ultraviolet ligjit, Brookhaven Symp.Biol., 20:17.Google Scholar
  60. Witkin, E.M., 1969, Ultraviolet induced mutation and DNA repair, Annu.Rev.Mierobiol., 23:487.CrossRefGoogle Scholar
  61. Witkin, E.M., 1976, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol.Rev., 40:869.Google Scholar
  62. Wood, R.D., and Hutchinson, F., 1984, Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light, J.Mol.Biol., 173:293.CrossRefGoogle Scholar
  63. Wood, R.D., Skopek, T.R., and Hutchinson, F., 1984, Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light, J.Mol.Biol., 173:273.CrossRefGoogle Scholar
  64. Wood, R., 1985, Pyrimidine dimers are not the principal pre-mutagenic lesions induced in lambda phage DNA by ultraviolet light, J.Mol.Biol., 184:577.CrossRefGoogle Scholar
  65. Zamansky, G.B., Kleinman, L.F., Black, P.H., and Kaplan, J.C., 1980, Reactivation of herpes simplex virus in a cell line inducible for simian virus 40 synthesis, Mutation Res., 70:1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Ileana Quinto
    • 1
  • Massimo Mallardo
    • 1
  • Maria R. Ruocco
    • 1
  • Alessandro Arcucci
    • 1
  • Giuseppe Scala
    • 1
  1. 1.Dipartimento di Biochimica e Biotecnologie Mediche, II Facoltà di Medicina e ChirurgiaUniversità degli Studi di NapoliNapoliItaly

Personalised recommendations