Aspects of Phylogenetic Variability of Neocortical Intrinsic Organization

  • Facundo Valverde
Chapter
Part of the NATO ASI Series book series (NSSA, volume 200)

Abstract

Our understanding of the intrinsic organization of the cerebral cortex greatly benefits from the blending of anatomy and physiology under the new concept of functional neuroanatomy. The fundamental principles of this enterprise were first conceived by Lorente de Nó (1949). He showed the existence of particular associations between a single afferent cortical fiber and groups of intrinsic neurons, advancing the concept of an elementary unit to designate a vertical cylinder or column of cortical tissue which has a central axis formed by a specific afferent fiber, containing all kinds of cells capable of carrying out the entire process of nerve transmission from the afferent fiber to the efferent axons. The idea was however not entirely new, for as early as 1898, Cajal suggested the existence of functional systems, or isodynamic groups of neurons in the visual cortex that could by activated by elementary sensory impressions. For several years, this basic unit was envisaged as a functional concept, because it explained earlier results obtained by neurophysiology in several of the primary sensory cortical areas, namely that cells having similar functional properties appear arranged along the vertical axis of the cortex from pia to the white matter. In the primary somatosensory and visual cortices, functional columns are fundamentally defined in terms of receptive field properties, while in the primary auditory cortex they are interpreted in terms of best frequency responses.

Keywords

Visual Cortex Pyramidal Cell Dendritic Spine Lateral Geniculate Nucleus Tree Shrew 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, R.A., Knight, P.L., and Merzenich, M.M. (1980) The thalamocortical and corticotha-lamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence of two largely segregated systems of connections. J. Comp. Neurol., 194: 663–701.PubMedCrossRefGoogle Scholar
  2. Anderson, P.A., Olavarria, J., and Van Sluyters, R.C. (1988) The overall pattern of ocular dominance bands in cat visual cortex. J. Neurosci., 8: 2183–2200.PubMedGoogle Scholar
  3. Blasdel, G.G., and Lund, J.S. (1983) Termination of afferent axons in macaque striate cortex. J. Neurosci., 3: 1389–1413.PubMedGoogle Scholar
  4. Cajal, S.R. (1898) Estructura del kiasma óptico y teorëa general de los entrecruzamientos de las vëas nerviosas. Rev. Trim. Microg., 4: 15–65.Google Scholar
  5. Cajal, S.R. (1911) Histologie de Systéme Nerveux de l’Homme et des Vertébrés, Vol. 2. Maloine: Paris (Reimpress. Instituto Cajal, CSIC, Madrid, 1955).Google Scholar
  6. Cajal, S.R. (1921) Textura de la corteza cerebral del gato. Trab. Lab. Invest. Biol., 19: 113–144.Google Scholar
  7. Colonnier, M., and Rossignol, S. (1969) Heterogeneity of the cerebral cortex, in: Basic Mechanisms of the Epilepsies, H. Jasper, A. Ward, and A. Pope, eds., Little Brown: Boston, 29–40.Google Scholar
  8. Conley, M., Fitzpatrick, D., and Diamond, I.T. (1984) The laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis). J. Neurosci., 4: 171–197.PubMedGoogle Scholar
  9. Davis, T.L., and Sterling, P. (1979) Microcircuitry of cat visual cortex: Classification of neurons in layer IV of area 17, and identification of the patterns of lateral geniculate input. J. Comp.Neurol., 188: 599–628.PubMedCrossRefGoogle Scholar
  10. Durham, D., and Woolsey, T.A. (1977) Barrels and columnar organization: evidence from 2-deoxyglucose (2-DG) experiments. Brain Res., 137: 169–174.PubMedCrossRefGoogle Scholar
  11. Eccles, J.C. (1981) The modular operation of the cerebral neocortex considered as the matieral basis of mental events. Neuroscience, 6: 1839–1856.PubMedCrossRefGoogle Scholar
  12. Eccles, J.C. (1984) The cerebral neocortex. A theory of its operation, in: Cerebral Cortex, Functional Properties of Cortical Cells, Vol. 2, E.G. Jones, and A. Peters, eds., Plenum Press: New York and London, 1–36.CrossRefGoogle Scholar
  13. Fairén, A., DeFelipe, J., and Regidor, J. (1984) Nonpyramidal neurons. General account, in: Cerebral Cortex, Cellular Components of the Cerebral Cortex, Vol. 1, A. Peters, and E.G. Jones, eds., Plenum Press: New York and London, 201–253.Google Scholar
  14. Fairén, A., and Valverde, F. (1979) Specific thalamo-cortical afferents and their presumptive targets in the visual cortex. A Golgi study, in: Progress in Brain Research. Development and Specificity of Neurons, Vol. 51, M. Cuénod, G.W. Kreutzberg, and F.E. Bloom, eds., Elsevier, Amsterdam, 419–438.CrossRefGoogle Scholar
  15. Feldman, M., and Peters, A. (1978) The forms of non-pyramidal neurons in the visual cortex of the rat. J. Comp. Neurol., 179: 761–794.PubMedCrossRefGoogle Scholar
  16. Ferster, D., and LeVay, S. (1978) The axonal arborizations of lateral geniculate neurons in the striate cortex of the rat. J. Comp. Neurol., 182: 923–944.PubMedCrossRefGoogle Scholar
  17. Florence, S.L., Sesma, M.A., and Casagrande, V.A. (1983) Morphology of geniculo-striate afferents in a prosimian primate. Brain Res., 270: 127–130.PubMedCrossRefGoogle Scholar
  18. Freund, T.F., Martin, K.A.C., and Whitteridge, D. (1985) Innervation of cat visual areas 17 and 18 by physiologically identified X-and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. J. Comp. Neurol., 242: 263–274.PubMedCrossRefGoogle Scholar
  19. Frost, D.O., and Caviness, V.S. (1980) Radial organization of thalamic projections to the neo-cortex in the mouse. J. Comp. Neurol., 194: 369–393.PubMedCrossRefGoogle Scholar
  20. Garey, L.H. (1971) A light and electron microscopic study of the visual cortex of the cat and monkey. Proc. Roy. Soc. London B, 179: 21–40.CrossRefGoogle Scholar
  21. Garey, L.H., and Powell, T.P.S. (1971) An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey. Proc. Roy. Soc. London B, 179: 1–63.CrossRefGoogle Scholar
  22. Gilbert, CD., and Wiesel, T.N. (1979) Morphology of intracortical projections of functionally characterised neurones in the cat visual cortex. Nature (London), 280: 120–125.CrossRefGoogle Scholar
  23. Gilbert, CD., and Wiesel, T.N. (1983) Clustered intrinsic connections in cat visual cortex. J. Neurosci., 3: 1116–1133.PubMedGoogle Scholar
  24. Glezer, I.I., Jacobs, M.S., and Morgane, P.J. (1988) Implications of the “initial brain” concept for brain evolution in cetacea. Behav. Brain Sci., 11: 75–116.CrossRefGoogle Scholar
  25. Goldman, P.S., and Nauta, W.J.H. (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res., 122: 393–413.PubMedCrossRefGoogle Scholar
  26. Gould, J.J., III, Hall, W.C., and Ebner, F.F. (1978) Connections of the visual cortex in the hedgehog (Paraechinus hypomelas). I. Thalamocortical projections. J. Comp. Neurol., 177: 445–471.PubMedCrossRefGoogle Scholar
  27. Hendrickson, A.E., Wilson, J.R., and Ogren, M.P. (1978) The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J. Comp. Neurol, 182: 123–136.PubMedCrossRefGoogle Scholar
  28. Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science, 207: 532–535.PubMedCrossRefGoogle Scholar
  29. Hornung, J.P., and Garey, L.J. (1980) A direct pathway from thalamus to visual callosal neurons in the cat. Exp. Brain Res., 38: 121–123.PubMedCrossRefGoogle Scholar
  30. Hornung, J.P., and Garey, LJ. (1981) The thalamic projection to cat visual cortex: Ultrastructure of neurons identified by Golgi impregnation or retrograde horseradish peroxidase transport. Neuroscience, 6: 1053–1068.PubMedCrossRefGoogle Scholar
  31. Hubel, D.H., and Wiesel, T.N. (1962) Receptive fields, binocular interaction and functional architecture in the cat visual cortex. J. Physiol. (Lond.), 160: 106–154Google Scholar
  32. Hubel, D.H., and Wiesel, T.N. (1968) Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.), 195: 215–243.Google Scholar
  33. Hubel, D.H., and Wiesel, T.N. (1969) Anatomical demonstration of columns in the monkey striate cortex. Nature (London), 221: 747–750.CrossRefGoogle Scholar
  34. Hubel, D.H., and Wiesel, T.N. (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol., 146: 421–450.PubMedCrossRefGoogle Scholar
  35. Humphrey, A.L., Sur, M., Uhlrich, D.J., and Sherman, S.M. (1985) Projection patterns of individual X-and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J. Comp. Neurol., 233: 159–189.PubMedCrossRefGoogle Scholar
  36. Innocenti, G.M. (1979) Adult and neonatal characteristics of the callosal zone at the boundary between areas 17 and 18 in the cat, in: Structure and Function of Cerebral Commissures, I.S. Russell, M.W. van Hof, and G. Berlucchi, eds., MacMillan Press: London, 244–28.Google Scholar
  37. Isseroff, A., Schwartz, M.L., Dekker, J.J., and Goldman-Rakic, P.S. (1984) Columnar organiza tion of callosal and association projections from rat frontal cortex. Brain Res., 293: 213–223.PubMedCrossRefGoogle Scholar
  38. Jensen, K.F., and Killackey, H.P. (1987) Terminal arbors of axons projecting to the somatosen-sory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J. Neurosci., 7: 3529–3543.PubMedGoogle Scholar
  39. Jones, E.G. (1984) Laminar distribution of cortical efferent cells, in: Cerebral Cortex, Cellular Components of the Cerebral Cortex, Vol. 1, A. Peters and E.G. Jones, eds., Plenum Press: New York and London, 521–553.CrossRefGoogle Scholar
  40. Jones, E.G., Coulter, J.D., and Wise, S.P. (1979) Commissural columns in the sensory-motor cortex of monkeys. J. Comp. Neurol., 188: 113–136.PubMedCrossRefGoogle Scholar
  41. Kelly, J.P., and Van Essen, D.C (1974) Cell structure and function in the visual cortex of the cat. J. Physiol., 238: 515–547.PubMedGoogle Scholar
  42. Killackey, H.P. (1973) Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res., 51: 326–331.PubMedCrossRefGoogle Scholar
  43. Killackey, H.P., Gould, H.I.H.J., Cusick, C.G., Pons, T.P., and Kaas, J.H. (1983) The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of New and Old World monkeys. J. Comp. Neurol., 219: 384–419.PubMedCrossRefGoogle Scholar
  44. Kisvárday, Z.F., Cowey, A., and Somogyi, P. (1986) Synaptic relationships of a type of GABA-immunoreactive neuron (clutch cell), spiny stellate cells and lateral geniculate nucleus afferents in layer IVc of the monkey striate cortex. Neuroscience, 19: 741–761.PubMedCrossRefGoogle Scholar
  45. Kisvárday, Z.F., Martin, K.A.C., Whitteridge, D., and Somogyi, P. (1985) Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat. J. Comp. Neurol, 241: 111–137.PubMedCrossRefGoogle Scholar
  46. Kostovic, I., and Rakic, P. (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J. Neurocytol, 9: 219–242.PubMedCrossRefGoogle Scholar
  47. LeVay, S., (1973) Synaptic patterns in the visual cortex of the cat and monkey: Electronmicro-scopy of Golgi preparations. J. Comp. Neurol., 150: 53–86.PubMedCrossRefGoogle Scholar
  48. LeVay, S., and Gilbert, C.D. (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res., 113: 1–19.PubMedCrossRefGoogle Scholar
  49. LeVay, S., Hubel, D.H., and Wiesel, T.N. (1975) The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol., 159: 559–575.PubMedCrossRefGoogle Scholar
  50. LeVay, S., Stryker, M.P., and Shatz, C.J. (1978) Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study. J. Comp. Neurol., 179: 223–244.PubMedCrossRefGoogle Scholar
  51. Lin, C.S., Friedlander, M.J., and Sherman, S.M. (1979) Morphology of physiologically identified neurons in the visual cortex of the cat. Brain Res., 172: 344–348.PubMedCrossRefGoogle Scholar
  52. Lorente de Nó, R. (1949) Cerebral cortex: Architecture, intracortical connections, motor projections, in: Fulton’s Physiology of the Nervous System, Oxford University Press: London, 288–330.Google Scholar
  53. Lund, J.S. (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatto). J. Comp. Neurol., 147: 455–496.PubMedCrossRefGoogle Scholar
  54. Lund, J.S. (1984) Spiny stellate neurons, in: Cerebral Cortex, Cellular Components of the Cerebral Cortex, Vol. 1, A. Peters, and E.G. Jones, eds., Plenum Press: New York and London, 255–308.Google Scholar
  55. Lund, J.S., Fitzpatrick, D., and Humphrey, A.L. (1985) The striate cortex of the tree shrew, in: Cerebral Cortex, Visual Cortex, Vol.3, A, Peters, and E.G. Jones, eds., Plenum Press: New York and London, 157–205.Google Scholar
  56. Lund, J.S., Henry, G.H., Macqueen, C.L., and Harvey, A.R. (1979) Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. J. Comp. Neurol., 184: 599–618.PubMedCrossRefGoogle Scholar
  57. Luskin, M.B., and Shatz, C.J. (1985) Studies of the earliest generated cells of the cat’s visual cortex: Cogeneration of subplate and marginal zones. J. Neurosci., 5: 1062–1075.PubMedGoogle Scholar
  58. Martin, K.A.C. (1984) Neuronal circuits in cat striate cortex, in: Cerebral Cortex, Functional Properties of Cortical Cells, Vol. 2, E.G. Jones, and A. Peters, eds., Plenum Press: New York and London, 241–284.CrossRefGoogle Scholar
  59. Martin, K.A.C. (1988) From single cells to simple circuits in the cerebral cortex. Quart. J. Exper. Physiol., 73: 637–702.Google Scholar
  60. Martin, K.A.C., and Whitteridge, D. (1984) Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J. Physiol. (London), 353: 463–504.Google Scholar
  61. McMullen, T.N., Glaser, E.M., and Tagamets, M. (1984) Morphometry of spine-free nonpyramidal neurons in rabbit auditory cortex. J. Comp. Neurol., 222: 383–395.PubMedCrossRefGoogle Scholar
  62. Merzenich, M.M., Colwell, S.A., and Andersen, A. (1982) Auditory forebrain organization. Thalamocortical and corticothalamic connections in the cat, in: Cortical Sensory Organization. Multiple Auditory Areas, Vol. 3, C.N. Woolsey, ed., Humana Press: Clifton, New Jersey, 43–57.CrossRefGoogle Scholar
  63. Meyer, G., and Albus, K. (1981) Spiny stellates as cells of origin of association fibers from area 17 to area 18 in the cat’s neocortex. Brain Res., 210: 335–341.PubMedCrossRefGoogle Scholar
  64. Meyer, G., and Ferres-Torres, R. (1984) Postnatal maturation of nonpyramidal neurons in the visual cortex of the cat. J. Comp. Neurol, 228: 226–244.PubMedCrossRefGoogle Scholar
  65. Mower, G.D., Caplan, C.J., Christen, W.G., and Duffy, F.H. (1985) Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. J. Comp. Neurol., 235: 448–466.PubMedCrossRefGoogle Scholar
  66. Naegele, J.R., Jhaveri, S., and Schneider, G.E. (1988) Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. J. Comp. Neurol., 277: 593–607.PubMedCrossRefGoogle Scholar
  67. Ogren, M.P., and Hendrickson, A.E. (1977) The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey. Brain Res., 137: 343–350.PubMedCrossRefGoogle Scholar
  68. O’Leary, J.L. (1941) Structure of the area striata of the cat. J. Comp. Neurol., 75: 131–164.CrossRefGoogle Scholar
  69. Oliver, D.L., and Hall, W.C. (1978) The medial geniculate body of the tree shrew, Tupaia glis. II. Connections with the neocortex. J. Comp. Neurol., 182: 459–494.PubMedCrossRefGoogle Scholar
  70. Peters, A., and Feldman, M.L. (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description. J. Neurocytol., 5: 63–84.PubMedCrossRefGoogle Scholar
  71. Peters, A., and Feldman, M.L. (1977) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. IV. Terminations upon spiny dendrites. J. Neurocytol., 6: 669–689.PubMedCrossRefGoogle Scholar
  72. Peters, A., Feldman, M.L., and Saldanha, J. (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. II. Terminations upon neuronal perikarya and dendritic shafts. J. Neurocytol, 5: 85–107.PubMedCrossRefGoogle Scholar
  73. Peters, A., and Jones, E.G. (1984) Classification of cortical neurons, in: Cerebral Cortex, Cellular Components of the Cerebral Cortex, Vol. 1, A. Peters, and E.G. Jones, eds., Plenum Press: New York and London, 107–121.Google Scholar
  74. Peters, A., Proskauer, C.C., Feldman, M.L., and Kimerer, L. (1979) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. V. Degenerating axon terminals syn-apsing with Golgi impregnated neurons. J. Neurocytol., 8: 331–357.PubMedCrossRefGoogle Scholar
  75. Peters, A., and Regidor, J. (1981) A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. J. Comp. Neurol., 203: 685–716.PubMedCrossRefGoogle Scholar
  76. Ramón-Moliner, E. (1967) La différentiation morphologique des neurones. Arch. Ital. Biol., 105: 149–188.PubMedGoogle Scholar
  77. Rezak, M., and Benevento, L.A. (1979) A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey. Brain Res., 169: 19–40.CrossRefGoogle Scholar
  78. Ribak, C.E., and Peters, A. (1975) An autoradiographic study of the projections from the lateral geniculate body of the rat. Brain Res., 92: 341–368.PubMedCrossRefGoogle Scholar
  79. Rieck, R.W., and Carey, R.G. (1985) Organization of the rostral thalamus in the rat: Evidence for connections to layer I of visual cortex. J. Comp. Neurol., 234: 137–154.PubMedCrossRefGoogle Scholar
  80. Rosenquist, A.C., Edwards, S.B., and Palmer, L.A. (1974) An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. Brain Res., 80: 71–93.PubMedCrossRefGoogle Scholar
  81. Ruiz-Marcos, A., and Valverde, F. (1970) Dynamic architecture of the visual cortex. Brain Res., 19: 25–39.PubMedCrossRefGoogle Scholar
  82. Saint Marie, R.L., and Peters, A. (1985) The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): A Golgi-electron microscope study. J. Comp. Neurol., 233: 213–235.PubMedCrossRefGoogle Scholar
  83. Sanides, D. (1979) Commissural connections of the visual cortex of the cat, in: Structure and Function of Cerebral Commissures, I.S. Russell, M.W. van Hof, and G. Berlucchi, eds., MacMillan Press: London, 236–243.Google Scholar
  84. Sanides, F. (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution, in: The Primate Brain. Advances in Primatology, C.R. Noback, and W. Montagna, eds., Appleton-Century-Crofts: New York, 137–208.Google Scholar
  85. Sanides, F., and Sanides, D. (1972) The “extraverted neurons” of the mammalian cerebral cortex. Z. anat. Entwickl.-gesch., 136: 272–293.CrossRefGoogle Scholar
  86. Shatz, C.J., Lindström, S., and Wiesel, T.N. (1977) The distribution of afferents representing the right and left eyes in the cat’s visual cortex. Brain Res., 131: 103–116.PubMedCrossRefGoogle Scholar
  87. Somogyi, P. (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscope: A direct method for the identification in the visual cortex of three successive links in a neuron chain. Neuroscience, 3: 167–180.PubMedCrossRefGoogle Scholar
  88. Szentágothai, J. (1973) Synaptology in the visual cortex, in: Handbook of Sensory Physiology, Central Visual Information, Vol. 7, R. Jung, ed., Springer, Berlin, 269–324.Google Scholar
  89. Szentágothai, J. (1975) The’ module concept’ in cerebral cortex architecture. Brain Res., 95: 475–496.PubMedCrossRefGoogle Scholar
  90. Szentágothai, J. (1978) The neuron network of the cerebral cortex: A functional interpretation. Proc. Roy. Soc. London, B, 201: 219–248.CrossRefGoogle Scholar
  91. Szentágothai, J. (1979) Local neuron circuits of the neocortex, in: The Neurosciences. Fourth Study Program, F.O. Schmitt, and F.G. Worden, eds., MIT Press, Cambridge, Massachusetts, 399–415.Google Scholar
  92. Valverde, F. (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res., 3: 337–352.PubMedCrossRefGoogle Scholar
  93. Valverde, F. (1968) Structural changes in the area striata of the mouse after enucleation. Exp. Brain Res., 5: 274–292.PubMedCrossRefGoogle Scholar
  94. Valverde, F. (1971) Short axon neuronal subsystems in the visual cortex of the monkey. Intern. J. Neurosci., 1: 181–197.CrossRefGoogle Scholar
  95. Valverde, F. (1976) Aspects of cortical organization related to the geometry of neurons with intra-cortical axons. J. Neurocytol., 5: 509–529.PubMedCrossRefGoogle Scholar
  96. Valverde, F. (1983) A comparative approach to neocortical organization based on the study of the brain of the hedgehog (Erinaceus europaeus), in: Ramón y Cajal’s Contribution to the Neurosciences, S. Grisolía, C. Guerri, F. Samson, S. Norton, and F. Reinoso-Suárez, eds., Elsevier, Amsterdam, 149–170.Google Scholar
  97. Valverde, F. (1985) The organizing principles of the primary visual cortex in the monkey, in: Cerebral Cortex, Visual Cortex, Vol. 3, A. Peters and E.G. Jones, eds., Plenum Press: New York and London, 207–257.Google Scholar
  98. Valverde, F. (1986) Intrinsic neocortical organization: Some comparative aspects. Neuro-sience, 18: 1–23.Google Scholar
  99. Valverde, F. (1988) Competition for the sake of diversity. Behav. Brain Sci., 11: 102–103.CrossRefGoogle Scholar
  100. Valverde, F., De Carlos, J.A., Lopez-Mascaraque, L., and Donate-Oliver, F. (1986) Neocortical layers I and II of the hedgehog (Erinaceus europaeus). II. Thalamo-cortical connections. Anat. Embryol., 175: 16171–179.CrossRefGoogle Scholar
  101. Valverde, F., and Facal-Valverde, M.V. (1986) Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization. Anat. Embryol., 173: 413–430.PubMedCrossRefGoogle Scholar
  102. Valverde, F., and Facal-Valverde, M-V. (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: A correlated Golgi and electron microscopic study. J. Comp. Neurol, 269: 168–192.PubMedCrossRefGoogle Scholar
  103. Valverde, F., Löpez-Mascaraque, L., and De Carlos, J.A. (1989) Structure of the nucleus olfactorius anterior in the hedgehog (Erinaceus europaeus). J. Comp. Neurol., 279: 581–600.PubMedCrossRefGoogle Scholar
  104. Valverde, F., and Ruiz-Marcos, A. (1969) Dendritic spines in the visual cortex of the mouse: Introduction to a mathematical model. Exp. Brain Res., 8: 269–283.PubMedCrossRefGoogle Scholar
  105. Welker, C. (1976) Receptive fields of barrels in the somatosensory neocortex of the rat. J. Comp. Neurol., 166: 173–190.PubMedCrossRefGoogle Scholar
  106. White, E.L. (1979) Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex. Brain Res. Rev., 1: 275–311.CrossRefGoogle Scholar
  107. Wilson, M.E., and Cragg, B.G. (1967) Projection from the lateral geniculate nucleus in the cat and monkey. J. Anat., 101: 677–692.PubMedGoogle Scholar
  108. Winfield, D.A., and Powell, T.P.S. (1976) The termination of thalamo-cortical fibers in the visual cortex of the cat. J. Neurocytol., 5: 269–281.PubMedCrossRefGoogle Scholar
  109. Winfield, D.A., and Powell, T.P.S. (1983) Laminar cell counts and geniculocortical boutons in area 17 of cat and monkey. Brain Res., 211: 223–229.CrossRefGoogle Scholar
  110. Winfield, D.A., Rivera-Dominguez, M., and Powell, T.P.S. (1982) The termination of geniculocortical fibers in area 17 of the visual cortex in the macaque monkey. Brain Res., 231: 19–32.PubMedCrossRefGoogle Scholar
  111. Wise, S.P., and Jones, E.G. (1976) The organization and postnatal development of the commis-sural projection of the rat somatic sensory cortex. J. Comp. Neurol., 168: 313–344.PubMedCrossRefGoogle Scholar
  112. Wise, S.P., and Jones, E.G. (1978) Developmental studies of thalamo-cortical and commissural connections in the rat somatic sensory cortex. J. Comp. Neurol., 178: 187–208.PubMedCrossRefGoogle Scholar
  113. Woolsey, T.A., Dierker, M.L., and Wann, D.F. (1975) Mouse SmI cortex: qualitative and quantitative classification of Golgi-impregnated barrel neurons. Proc. Natl. Acad. Sci. USA, 72: 2165–2169.PubMedCrossRefGoogle Scholar
  114. Woolsey, T.A., and Van der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res., 17: 205–242.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Facundo Valverde
    • 1
  1. 1.Santiago Ramón y CajalInstituto de NeurobiologíaMadridSpain

Personalised recommendations