Advertisement

The Dorsal Ventricular Ridge and Cortex of Reptiles in Historical and Phylogenetic Perspective

  • Anthony H. M. Lohman
  • Wilhelmus J. A. J. Smeets
Chapter
Part of the NATO ASI Series book series (NSSA, volume 200)

Abstract

From a comparative point of view, reptiles are of particular interest, since they are believed to be ancestral to both birds and mammals. It is, therefore, not surprising that in many laboratories species of the reptilian class have been and are still being used in search for basic features of the central nervous system of amniotes, i.e. reptiles, birds, and mammals. One of the most intriguing questions is whether a structure homologous to the mammalian neocortex is already present in the forebrain of reptiles. Before dealing with this question, some introductory comments will be made on the classification of the reptilian species mentioned in this chapter and on the anatomy of the reptilian forebrain.

Keywords

Thalamic Nucleus Lateral Cortex Amygdaloid Complex Medial Cortex Efferent Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariëns Kappers, C.U., Huber, G.C., and Crosby, E.C. (1936) The comparative anatomy of the nervous system of vertebrates, including man. Vol. III, Hafner, New York.Google Scholar
  2. Balaban, C.D., and Ulinski, P.S. (1981) Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei. J. Comp. Neurol., 200: 95–130.PubMedCrossRefGoogle Scholar
  3. Barbas-Henry, H.A., and Lohman, A.H.M. (1988) The primary projections and efferent cells of the VIIIth cranial nerve in the monitor lizard, Varanus exanthematicus. J. Comp. Neurol., 277: 234–249.CrossRefGoogle Scholar
  4. Bass, A.H., and Northcutt, R.G. (1981) Retinal recipient nuclei in the painted turtle, Chrysemys picta: An autoradiographic and HRP study. J. Comp. Neurol., 199: 97–112.PubMedCrossRefGoogle Scholar
  5. Braford Jr., M.R. (1972) Ascending efferent tectal projections in the South American spectacled caiman. Anat. Rec, 172: 275–276.Google Scholar
  6. Bruce, L.L., and Butler, A.B. (1984a) Telencephalic connections in lizards. I. Projections to cortex. J. Comp. Neurol., 229: 585–601.PubMedCrossRefGoogle Scholar
  7. Bruce, L.L., and Butler, A.B. (1984b) Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J. Comp. Neurol., 229: 602–615.PubMedCrossRefGoogle Scholar
  8. Butler, A.B. (1976) The telencephalon of the lizard Gekko gecko (Linnaeus): Some connections of the cortex and dorsal ventricular ridge. Brain Behav. Evol., 13: 396–417.PubMedCrossRefGoogle Scholar
  9. Butler, A.B. (1978) Forebrain connections in lizards and the evolution of sensory systems, in: Behavior and Neurology of Lizards, N. Greenberg and P.D. MacLean, eds., NIMH, Rockville, Maryland, pp. 65–78.Google Scholar
  10. Butler, A.B., and Northcutt, R.G. (1971) Ascending tectal efferent projections in the lizard Iguana iguana. Brain Res., 35: 597–601.PubMedCrossRefGoogle Scholar
  11. Butler, A.B., and Northcutt, R.G. (1978) New thalamic visual nuclei in lizards. Brain Res., 149: 469–472.PubMedCrossRefGoogle Scholar
  12. Curwen, A.O. (1937) The telencephalon of Tupinambis nigropunctatus. I. Medial and cortical areas. J. Comp. Neurol., 66: 375–404.CrossRefGoogle Scholar
  13. Curwen, A.O. (1938) The telencephalon of Tupinambis nigropunctatus. II. Corpus striatum. J. Comp. Neurol., 69: 229–247.CrossRefGoogle Scholar
  14. Dacey, D.M., and Ulinski, P.S. (1983) Nucleus rotundus in a snake, Thamnophis sirtalis: An analysis of a nonretinotopic projection. J. Comp. Neurol., 216: 175–191.PubMedCrossRefGoogle Scholar
  15. Dacey, D.M., and Ulinski, P.S. (1986) Optic tectum of the Easter garter snake, Thamnophis sirtalis. V. Morphology of brainstem afferents and general discussion. J. Comp. Neurol., 245: 423–453.PubMedCrossRefGoogle Scholar
  16. Davidova, T.V., and Goncharova (1979) Comparative characterization of the basic forebrain cortical zones in Emys orbicularis (Linnaeus) and Testudo horsfieldi (Gray). J. Hirnforsch., 20: 245–262.Google Scholar
  17. Desan, P.H. (1984) The organization of the cerebral cortex of the pond turtle, Pseudemys scripta elegans. Ph.D. Dissertation, Harvard University, Harvard.Google Scholar
  18. Desan, P.H. (1988) Organization of the cerebral cortex in turtle, in: The Forebrain or Reptiles. Current Concepts of Structure and Function, W.K. Schwerdtfeger and W.J.A.J. Smeets. eds., Karger, Basel, pp. 1–11.Google Scholar
  19. Ebbesson, S.O.E. (1967) Ascending axon degeneration following hemisection of the spinal cord in the tegu lizard, Tupinambis nigropunctatus. Brain Res., 5: 178–206.CrossRefGoogle Scholar
  20. Ebbesson, S.O.E. (1969) Brain stem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann. N.Y. Acad. Sci., 167: 80–101.CrossRefGoogle Scholar
  21. Ebbesson, S.O.E. (1978) Somatosensory pathways in lizards. The identification of the medial lemniscus and related structures, in: Behavior and Neurology of Lizards, N. Greenberg and P.D. MacLean, eds., NIMH, Rockville, Maryland, pp. 91–104.Google Scholar
  22. Ebbesson, S.O.E., and Goodman, D.C. (1981) Organization of ascending spinal projections in Caiman crocodilus. Cell Tis. Res., 215: 383–396.Google Scholar
  23. Edinger, L. (1896) Untersuchungen über die vergleichende Anatomie des Gehirns. III. Neue Studienüber das Vorderhirn der Reptilien, Abh. Senckenb. Naturforsch. Gesch., 19: 313–388.Google Scholar
  24. Elliot Smith, G. (1919) A preliminary note on the morphology of the corpus striatum and the origin of the neopallium. J. Anat., (London), 53: 271–291.Google Scholar
  25. Foster, R.E., and Hall, W.C. (1975) The connections and laminar organization of the optic tectum in a reptile (Iguana). J. Comp. Neurol., 163: 397–426.PubMedCrossRefGoogle Scholar
  26. Foster, R.E., and Hall, W.C. (1978) The organization of central auditory pathways in a reptile, Iguana iguana. J. Comp. Neurol., 178: 783–832.CrossRefGoogle Scholar
  27. Gerfen, C.R., and Sawchenko, P.E. (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohisto chemical localization of an axonally transported plant lectin, Phaseolus vulgaris Leucoag-glutinin (PHAL). Brain Res., 290: 219–238.PubMedCrossRefGoogle Scholar
  28. Goffinet, A.M. (1983) The embryonic development of the cortical plate in reptiles: A comparative analysis in Emys orbicularis and Lacerta agilis. J. Comp. Neurol., 215: 437–452.PubMedCrossRefGoogle Scholar
  29. Goldby, F. (1934) The cerebral hemispheres of Lacerta viridis. J. Anat., (London), 68: 157–215.Google Scholar
  30. Goldby, F., and Gamble, H.J. (1957) The reptilian cerebral hemispheres. Biol. Rev., 32: 383–420.CrossRefGoogle Scholar
  31. Gonzalez, A., Russchen, F.T., and Lohman, A.H.M. (1990) Afferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. Brain, Behav. Evol. in press.Google Scholar
  32. Hall, W.C., and Ebner, F.F. (1970a) Parallels in the visual afferent projections of the thalamus in the hedgehog (Paraechinus hypomelas) and the turtle (Pseudemys scripta). Brain Behav. Evol., 3: 135–154.PubMedCrossRefGoogle Scholar
  33. Hall, W.C., and Ebner, F.F. (1970b) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J. Comp. Neurol, 140: 101–122.PubMedCrossRefGoogle Scholar
  34. Halpern, M., and Frumin, N. (1973) Retinal projections in a snake. Thamnophis sirtalis. J. Morphol., 141: 359–382.CrossRefGoogle Scholar
  35. Heller, S.B., and Ulinski, P.S. (1987) Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys. Anat. Embryol, 175: 505–515.PubMedCrossRefGoogle Scholar
  36. Herkenham, M. (1978) The connections of the nucleus reuniens thalami: Evidence of a direct thalamo-hippocampal pathway in the rat. J. Comp. Neurol., 177: 589–610.PubMedCrossRefGoogle Scholar
  37. Holmgren, N. (1925) Points of view concerning forebrain morphology in higher vertebrates. Acta Zool, 6: 415–477.Google Scholar
  38. Hoogland, P.V. (1977) Efferent connections of the striatum in Tupinambis nigropunctatus. J. Morphol., 152: 229–246.PubMedCrossRefGoogle Scholar
  39. Hoogland, P.V. (1981) Spinothalamic projections in a lizard, Varanus exanthematicus: An HRP study. J. Comp. Neurol., 198: 7–12.PubMedCrossRefGoogle Scholar
  40. Hoogland, P.V. (1982) Brainstem afferents to the thalamus in a lizard, Varanus Exanthmaticus, J. Comp. Neurol., 210: 152–162.PubMedCrossRefGoogle Scholar
  41. Hoogland, P.V., and Vermeulen-VanderZee, E. (1988) Intrinsic and extrinsic connections of the cerebral cortex of lizards, in: The Forebrain of Reptiles. Current Concepts of Structure and Function, W.K. Schwerdtfeger and W.J.A.J. Smeets, eds., Karger, Basel, pp. 20–29.Google Scholar
  42. Hoogland, P.V., and Vermeulen-VanderZee, E. (1989) Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol, 285: 289–303.PubMedCrossRefGoogle Scholar
  43. Hunter, J. (1861) Essays and Observations on Natural History, Anatomy, Physiology, Psychology and Geology, J. Van Voorst, London.Google Scholar
  44. Johnston, J.B. (1915) The cell masses in the forebrain of the turtle Cistudo Carolina. J. Comp. Neurol, 25: 393–468.CrossRefGoogle Scholar
  45. Källén, B. (1951) On the ontogeny of the reptilian forebrain. Nuclear structures and ventricular sulci. J. Comp. Neurol., 95: 307–347.PubMedCrossRefGoogle Scholar
  46. Kirsche, W. (1972) Die Entwicklung des Telencephalons derReptilien und deren Beziehung zur Hirn-Bauplanlehre. Nova Acta Leopoldina, 204: 1–78.Google Scholar
  47. Kosareva, A.A. (1974) Afferent and efferent links of nucleus rotundus of the tortoise Emys or-bicularis. Evol. Biochem. Physiol, 10: 354–360.Google Scholar
  48. Kuhlenbeck, H. (1929) Die Grundbestandteile des Endhirns im Lichte der Bauplanlehre. Anat. Anz., 67: 1–51.Google Scholar
  49. Künzle, H., and Woodson, W. (1982) Meso-diencephalic and other target regions of ascending spinal projections in the turtle, Pseudemus scripta elegans. J. Comp. Neurol, 212: 349–364.PubMedCrossRefGoogle Scholar
  50. Künzle, H., and Snyder, H. (1983) Do retinal and spinal projections overlap within the turtle thalamus? Neuroscience, 10: 161–168.PubMedCrossRefGoogle Scholar
  51. Leake, P.A. (1974) Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav. Evol, 10: 170–196.PubMedCrossRefGoogle Scholar
  52. Lohman, A.H.M., and Mentink, G.M. (1972) Some cortical connections of the tegu lizard (Tupinambis teguixin). Brain Res., 45: 25–344.CrossRefGoogle Scholar
  53. Lohman, A.H.M., and Van Woerden-Verkley, I. (1976) Further studies on the cortical connections of the tegu lizard. Brain Res., 103: 9–28.PubMedCrossRefGoogle Scholar
  54. Lohman, A.H.M., and Van Woerden-Verkley, I. (1978) Ascending connections to the forebrain in the tegu lizard. J. Comp. Neurol., 182: 555–594.PubMedCrossRefGoogle Scholar
  55. Lohman, A.H.M., Hoogland, P.V., and Witjes, J.G.M. (1988) Projections from the main and accessory olfactory bulbs to the amygdaloid complex in the lizard Gekko gecko, in: The Forebrain of Reptiles. Current Concepts of Structure and Function W.K. Schwerdtfeger and W.J.A.J. Smeets, eds., Karger, Basel, pp. 41–49.Google Scholar
  56. Lopes da Silva, F.H., Witter, M.P., Boeijinga, P.H., and Lohman, A.H.M. (1990) Anatomical organization and physiology of the limbic cortex, Physiological reviews, 70: 453–511.PubMedGoogle Scholar
  57. Manley, J.A. (1971) Single unit studies in the midbrain auditory area of Caiman. Z. Vergl., Physiol, 71: 255–261.Google Scholar
  58. Martinez-Garcia, F.M., Amiguet, M., Olucha, F., and Lopez-Garcia, C. (1986) Connections of the lateral cortex in the lizard Podarcis hispanica. Neurosci. Lett., 63: 39–44.PubMedCrossRefGoogle Scholar
  59. Miller, M.R. (1975) The cochlear nuclei of lizards. J. Comp. Neurol., 159: 375–406.PubMedCrossRefGoogle Scholar
  60. Miller, M.R. (1980) The cochlear nuclei of snakes. J. Comp. Neurol, 192: 717–736.PubMedCrossRefGoogle Scholar
  61. Miller, M.R., and Kasahara, M. (1979) The cochlear nuclei of some turtles. J. Comp. Neurol., 185: 221–236.PubMedCrossRefGoogle Scholar
  62. Nauta, W.J.H., and Karten, H.J. (1970) A general profile of the vertebrate brain, with side lights on the ancestry of cerebral cortex, in: The Neurosciences Second Study Program, F.O. Schmitt, ed., Rockefeller Univ., New York, pp. 7–26.Google Scholar
  63. Northcutt, R.G. (1970) The telencephalon of the western painted turtle (Chrysemys picta belli). III, Biol. Mon., No. 43, Univ. Illinois Press, Urbana.Google Scholar
  64. Northcutt, R.G., and Butler, A.B. (1974) Evolution of reptilian visual systems: Retinal projections in a nocturnal lizard, Gekko gecko (Linnaeus). J. Comp. Neurol., 157: 453–465.PubMedCrossRefGoogle Scholar
  65. Pandya, D.N., and Seltzer, B. (1982) Association areas of the cerebral cortex, TINS, 5: 386–392.Google Scholar
  66. Pandya, D.N., and Yeterian, E.H. (1985) Architecture and connections of cortical association areas, in: Cerebral cortex, Association and Auditory cortices, vol. 4, pp.3–61, A. Peters and E.G. Jones, eds., Plenum Press, New York and London.Google Scholar
  67. Pritz, M.B. (1974a) Ascending connections of a midbrain auditory area in a crocodile. Caiman crocodilus. J. Comp. Neurol, 153: 179–198.PubMedCrossRefGoogle Scholar
  68. Pritz, M.B. (1974b) Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. J. Comp. Neurol, 153: 199–214.PubMedCrossRefGoogle Scholar
  69. Pritz, M.B. (1975) Anatomical identification of a telencephalic visual area in crocodiles: ascending connections of nucleus rotundus in Caiman crocodilus. J. Comp. Neurol, 164: 323–338.PubMedCrossRefGoogle Scholar
  70. Pritz, M.B., and Northcutt, R.G. (1980) Anatomical evidence for an ascending somatosensory pathway to the telencephalon in crocodiles, Caiman crocodilus. Exp. Brain Res., 40: 342–345.PubMedCrossRefGoogle Scholar
  71. Pritz, M.B., and Stritzel, M.E. (1986) Percentage of relay and intrinsic neurons in two sensory thalamic nuclei projecting to the noncortical telencephalon in reptiles, Caiman crocodilus. Brain Res., 376: 169–174.PubMedCrossRefGoogle Scholar
  72. Pritz, M.B., and Stritzel, M.E. (1987) Percentage of intrinsic and relay cells in a thalamic nucleus projecting to general cortex in reptiles, Caiman crocodilus. Brain Res., 409: 146–150.PubMedCrossRefGoogle Scholar
  73. Pritz, M.B., and Stritzel, M.E. (1988) Thalamic nuclei that project to reptilian telencephalon lack GABA and GAD immunoreactive neurons and puncta. Brain Res., 457: 154–159.PubMedCrossRefGoogle Scholar
  74. Rainey, W.T., and Ulinski, P.S. (1982) Organization of nucleus rotundus, a tectofugal thalamic nucleus in turtles.Il. The tectorotundal projection. J. Comp. Neurol, 209: 187–207.PubMedCrossRefGoogle Scholar
  75. Raisman, G., Cowan, W.M., and Powell, T.P.S. (1966) An experimental analysis of the efferent projection of the hippocampus. Brain, 89: 83–108.PubMedCrossRefGoogle Scholar
  76. Repérant, J., Rio, J.-P., Miceli, D., and Lemire, M. (1978) A radioautographic study of retinal projections in type I and type II lizards. Brain Res., 142: 401–411.PubMedCrossRefGoogle Scholar
  77. Romer, A.S., and Parsons, T.S. (1977) The vertebrate body, VIII, Saunders, Philadelphia, pp. 624.Google Scholar
  78. Smeets, W.J.A.J. (1988a) Distribution of dopamine immunoreactivity in the forebrain and midbrain of the snake Python regius, A study with antibodies against dopamine. J. Comp. Neurol., 271: 115–129.PubMedCrossRefGoogle Scholar
  79. Smeets, W.J.A.J. (1988b) The monoaminergic systems of reptiles investigated with specific antibodies against serotonin, dopamine, and noradrenaline, in: The Forebrain of Reptiles, Current Concepts of Structure and Function, W.K. Schwerdtfeger and W.J.A.J. Smeets, eds., Karger, Basel, pp.97–109.Google Scholar
  80. Smeets, W.J.A.J., Hoogland, P.V., and Lohman, A.H.M. (1986a) A forebrain atlas of the lizard Gekko gecko. J. Comp. Neurol., 254: 1–19.PubMedCrossRefGoogle Scholar
  81. Smeets, W.J.A.J., Hoogland, P.V., and Voorn, P. (1986b) The distribution of dopamine immunoreactivity in the forebrain and the midbrain of the lizard Gekko gecko: An immunohis-tochemical study with antibodies against dopamine. J. Comp. Neurol., 253: 46–60.PubMedCrossRefGoogle Scholar
  82. Smeets, W.J.A.J., Jonker, A.J., and Hoogland, P.V. (1987) Distribution of dopamine in the forebrain and midbrain of the red-eared turtle, Pseudemys scripta elegans, reinvestigated using antibodies against dopamine. Brain, Behav. Evol, 30: 121–142.CrossRefGoogle Scholar
  83. Smeets, W.J.A.J., and Steinbusch, H.W.M. (1988) Distribution of serotonin immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. J. Comp. Neurol., 271: 419–434.PubMedCrossRefGoogle Scholar
  84. Smeets, W.J.A.J., and Steinbusch, H.W.M. (1989) Distribution of noradrenaline immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. J. Comp Neurol., 285: 453–466.PubMedCrossRefGoogle Scholar
  85. Stoll, C.J., Smeets, W.J.A.J., and Hoogland, P.V. (1983) The fornix in reptiles. Neurosci. Lett. [Suppl.], 14: 359.Google Scholar
  86. Stoof, J.C., Russchen, F.T., Verheijden, P.F.H.M., and Hoogland, P.V.J.M. (1987) A comparative study of the dopamine-acetylcholine interaction in the telencephalic structures of the rat and of a reptile, the lizard Gekko gecko. Brain Res., 404: 273–281.PubMedCrossRefGoogle Scholar
  87. ten Donkelaar, HJ., and De Boer-Van Huizen, R. (1988) Brainstem afferents to the anterior dorsal ventricular ridge in a lizard (Varanus exanthematicus). Anat. Embryol., 177: 465–475.PubMedCrossRefGoogle Scholar
  88. Ulinski, P.S. (1978) Organization of anterior dorsal ventricular ridge in snakes, J. Comp. Neurol., 178: 411–450.PubMedCrossRefGoogle Scholar
  89. Ulinski, P.S. (1983) The dorsal ventricular ridge. A treatise on forebrain organization in reptiles and birds, in: Wiley Series on Neurobiology, R.G. Northcutt, ed., Wiley, New York.Google Scholar
  90. Unger, L. (1906) Untersuchungen über die Morphologie und Faserung des Reptiliengehirns. Anat. Hefte, 31: 271–341.Google Scholar
  91. Voorn, P., Kalsbeek, A., Jorritsma-Byham, B., and Groenewegen, H.J. (1988) The pre-and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience, 25: 857–887.PubMedCrossRefGoogle Scholar
  92. Wang, R.T., and Halpern, M. (1977) Afferent and efferent connections of thalamic nuclei of the visual system of garter snakes. Anat. Rec., 187: 741–742.Google Scholar
  93. Webster, K.E. (1973) Thalamus and basal ganglia in reptiles and birds. Symp. Zool. Soc. Lond, 3: 169–203.Google Scholar
  94. Welker, E., Hoogland, P.V., and Lohman, A.H.M. (1983) Tectal connections in Python retic-ulatus. J. Comp. Neurol., 220: 347–354.PubMedCrossRefGoogle Scholar
  95. Witter, M.P., Groenewegen, HJ., Lopes da Silva, F.H., and Lohman, A.H.M. (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Progress in Neurobiol., 33: 161–253.CrossRefGoogle Scholar
  96. Yanes, CM., Perez-Batista, M.A., Martin-Trujillo, J.M., Monzon, M., and Marrero, A. (1987) Anterior dorsal ventricular ridge in the lizard: embryonic development. J. Morphol., 194: 55–64.CrossRefGoogle Scholar
  97. Yanes, C., Perez-Batista, M.A., Martin-Trujillo, J.M., Monzon, M., and Rodriguez, A. (1989) Development of the ventral striatum in the lizard Gallotia galloti. J. Anat., 164: 93–100.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Anthony H. M. Lohman
    • 1
  • Wilhelmus J. A. J. Smeets
    • 1
  1. 1.Department of Anatomy and EmbryologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations