Pathways Between Development and Evolution

  • Giorgio M. Innocenti
Part of the NATO ASI Series book series (NSSA, volume 200)


At a recent round table discussion on evolution and development, a friend developmental neurobiologist whose opinion I cherish said more or less: “What is the use of thinking about evolution? Did it ever generate an experiment?” The ensuing silence seemed to settle the issue. The first part of this paper readdresses these questions. The second part deals with the possibility that developmental concepts may allow one to model, or even predict aspects of evolution. Although evolution is undoubtedly the most powerful theoretical concept in biology it cannot really be tested experimentally. An evolutionary scenario can, however, be represented by a model; known developmental mechanisms or rules can provide criteria for testing the coherence of the model.


Corpus Callosum Visual Cortex Ocular Dominance Axon Collateral Supragranular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberch, P. (1982) Developmental constraints in evolutionary processes, in: “Evolution and Development.” J. T. Bonner, ed., Dahlem Konferenzen, Springer-Verlag, Berlin.Google Scholar
  2. Arthur W. (1988) “A Theory of the Evolution of Development.” John Wiley & Sons, Chichester.Google Scholar
  3. Assal, F., Melzer, P., and Innocenti, G.M. (1989) Functional analysis of a visual cortical circuit resembling human microgyria. Europ. J. Neurosci., Suppl. 2: 256.Google Scholar
  4. Angevine, J.B., and Sidman, R.L. (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature, 192: 766.PubMedCrossRefGoogle Scholar
  5. Bear, M.F., and Singer, W. (1986) Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature, 320: 172.PubMedCrossRefGoogle Scholar
  6. Berbel, P., and Innocenti, G.M. (1988) The development of the corpus callosum in cats: A light-and electron-microscopic study. J. Comp. Neurol., 276:132.PubMedCrossRefGoogle Scholar
  7. Berbel, P., Innocenti, G.M., Prieto, J.J., and Kraftsik, R. (1989) A quantitative study on the development of the cytoskeleton of callosal axons in cats. Europ. J. Neurosci., Suppl. 2:47.Google Scholar
  8. Buisseret, P., and Singer, W. (1983) Proprioceptive signals from extraocular muscles gate experience-dependent modifications of receptive fields in the kitten visual cortex. Exp. Brain Res., 51: 443.Google Scholar
  9. Clarke, S., and Innocenti, G.M. (1986) Organization of immature intrahemispheric connections. J. Comp. Neurol., 251: 1.PubMedCrossRefGoogle Scholar
  10. Clarke, S., Kraftsik, R., Van der Loos, H., and Innocenti, G.M. (1989) Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J. Comp. Neurol., 280: 213.PubMedCrossRefGoogle Scholar
  11. Cynader, M., and Mitchell, D.E. (1980) Prolonged sensitivity to monocular deprivation in dark-reared cats. J. Neurophysiol., 43: 1026.PubMedGoogle Scholar
  12. Dehay, C., Kennedy, H., Bullier, J., and Berland, M. (1988) Absence of interhemispheric connections of area 17 during development in the monkey. Nature, 331: 348.PubMedCrossRefGoogle Scholar
  13. Dehay, C., Horsburgh, G., Berland, M., Killakey, H., and Kennedy, H. (1989) Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input. Nature, 337: 265.PubMedCrossRefGoogle Scholar
  14. Figlewicz, D.A., Gremo, F., and Innocenti, G.M. (1988) Differential expression of neurofil-ament subunits in the developing corpus callosum. Dev. Brain Res., 42: 181.CrossRefGoogle Scholar
  15. Fleischhauer, K., and Schlüter, G. (1970) Ueber das postnatale Wachstum des Corpus callosum der Katze (Felis domestica). Z. Anat. Entwick-Gesch., 132: 228.CrossRefGoogle Scholar
  16. Goldman-Rakic, P.S. (1982) Neuronal development and plasticity of association cortex in primates. Neurosciences Res. Prog. Bull., 20: 520.Google Scholar
  17. Guadano-Ferraz, A., Riederer, B., and Innocenti, G.M. (1990) Developmental changes in the heavy subunit of neurofilaments in the corpus callosum of the cat. Dev. Brain Res., submitted.Google Scholar
  18. Heimer, L., Ebner, F.F., and Nauta, W.J.H. (1967) A note on the termination of commissural fibers in the neocortex. Brain Res., 5: 171.PubMedCrossRefGoogle Scholar
  19. Hinton, G.E., and Seijnowski, T.J. (1986) Learning and relearning in Boltzmann machines. In: “Parallel Distributed Processing. Explorations in the Microstructure of Cognition”. Volume 1: Foundations, D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, eds., The MIT Press, Cambridge.Google Scholar
  20. Hofman, M.A. (1985) Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav. Evol., 27: 28.PubMedCrossRefGoogle Scholar
  21. Hofman, M.A. (1988) Size and shape of the cerebral cortex in mammals. II. The cortical volume. Brain Behav. Evol., 32: 17.PubMedCrossRefGoogle Scholar
  22. Hopfield, J.J., and Tank, D.W. (1986) Computing with neural circuits: a model. Science, 233: 625.PubMedCrossRefGoogle Scholar
  23. Hornung, J.P., Assal, F., and Innocenti, G.M. (1989) Distribution of diffuse afferents and interneurons in experimentally induced microcortex in cat visual cortex. Europ. J. Neurosci., Suppl. 2: 105.Google Scholar
  24. Innocenti, G.M., (1986) General organization of callosal connections in the cerebral cortex. In: “Cerebral Cortex”, vol. 5, E.G. Jones, and A. Peters, eds., Plenum Publishing Corporation.Google Scholar
  25. Innocenti, G.M., (1988) Loss of axonal projections in the development of the mammalian brain, In: “The Making of the Nervous System”, J. G. Parnavelas, C.D. Stern, and R.V. Sterling eds., Oxford University Press.Google Scholar
  26. Innocenti, G.M. (1990) The development of projections from cerebral cortex. Progress in Sensory Physiol., in press.Google Scholar
  27. Innocenti, G.M., Berbel, P., and Melzer, P. (1987) Stabilization of transitory cortico-cortical projections following lesions provoked by neonatal ibotenic acid injections. Neuroscience, 22: S227.Google Scholar
  28. Innocenti, G.M., Berbel, P., Aschoff, A., and Melzer, P. (1988) Connections and functional properties of an experimental cortical network. Europ. J. Neurosci., Suppl. 1: 334.Google Scholar
  29. Innocenti, G.M., and Caminiti, R. (1980) Postnatal shaping of callosal connections from sen sory areas. Exp. Brain Res., 38: 381.PubMedCrossRefGoogle Scholar
  30. Innocenti, G.M., and Clarke, S. (1984) The organization of immature callosal connections. J. Comp. Neurol., 230: 287.PubMedCrossRefGoogle Scholar
  31. Johnson, J.I. (1980) Morphological correlates of specialized elaborations in somatic sensory cerebral neocortex. In: “Comparative Neurology of the Telencephalon,” S.O.E. Ebbesson, ed., Plenum Press, New York.Google Scholar
  32. Kaas, J.H. (1980) A comparative survey of visual cortex organization in mammals. In: “Comparative Neurology of the Telencephalon,” S.O. Ebbesson, ed., Plenum Press.Google Scholar
  33. Kasamatsu, T. (1987) Norepinephrine hypothesis for visual cortical plasticity: thesis, antithesis, and recent development. Current Topics in Developmental Biology, 21: 367.PubMedCrossRefGoogle Scholar
  34. Kauffman, S.A. (1983) Developmental constraints: internal factors in evolution. In: “Development and Evolution,” B.C. Goodwin, N. Holder, and C.C. Wylie, eds., Cambridge University Press, Cambridge.Google Scholar
  35. Killackey, H.P., and Chalupa, L.M. (1986) Ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey. J. Comp. Neurol., 244: 331.PubMedCrossRefGoogle Scholar
  36. Luskin, M.B., and Shatz, C.J. (1985) Neurogenesis of the cat’s primary visual cortex. J. Comp. Neurol, 242: 611.PubMedCrossRefGoogle Scholar
  37. Maderson, P.F.A. (1982) The role of development in macroevolutionary change. Group report. In: “Evolution and Development,” J.T. Bonner, ed., Springer-Verlag, Berlin.Google Scholar
  38. Maffei, L., and Bisti, S. (1976) Binocular interaction in strabismic kittens deprived of vision. Science, 191: 579.PubMedCrossRefGoogle Scholar
  39. Miller, K.D., Keller, J.B., and Stryker, M.P. (1989) Ocular dominance column development: analysis and simulation. Science, 245: 605.PubMedCrossRefGoogle Scholar
  40. Nakamura, H., and Kanaseki, T. (1989) Topography of the corpus callosum in the cat. Brain Res. 485: 171.PubMedCrossRefGoogle Scholar
  41. O’Leary, D.D.M., and Stanfield, B.B. (1986) A transient pyramidal tract projection from the visual cortex in the hamster and its removal by selective collateral elimination. Dev. Brain Res., 27: 87.CrossRefGoogle Scholar
  42. Rakic, P. (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science, 183: 425.PubMedCrossRefGoogle Scholar
  43. Rakic, P. (1988) Specification of cerebral cortical areas. Science, 241: 170–176.PubMedCrossRefGoogle Scholar
  44. Rakic, P., Bourgeois, J.-P., Eckenhoff, M.F., Zecevic, N., and Goldman-Rakic, P.S. (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 232: 232.PubMedCrossRefGoogle Scholar
  45. Riederer, B., Guadano-Ferraz, A., and Innocenti, G.M., Difference in distribution of microtu-bule-associated proteins 5a and 5b during the development of cerebral cortex and corpus callosum in cats: dependence on phosphorylation, submitted.Google Scholar
  46. Salk, J. (1983) “Anatomy of Reality. Merging of Intuition and Reason.” Columbia University Press, New York.Google Scholar
  47. Sanides, F. (1969) Comparative architectonics of the neocortex of mammals and their evolutionary interpretation. Ann. NY. Acad. Sci., 167: 404.CrossRefGoogle Scholar
  48. Sawaguchi, T., and Kubota, K. (1986) A hypothesis on the primate neocortex evolution: column-multiplication hypothesis. Intern. J. Neuroscience, 30: 57.CrossRefGoogle Scholar
  49. Singer, W. (1982) Central core control of developmental plasticity in the kitten visual cortex: I. Diencephalic lesions. Exp. Brain Res., 47: 209.PubMedGoogle Scholar
  50. Singer, W., and Rauschecker, J.P. (1982) Central core control of developmental plasticity in the kitten visual cortex: II. Electrical activation of mesencephalic and diencephalic projections. Exp. Brain Res., 47: 223.PubMedGoogle Scholar
  51. Waddington, C.H. (1957) The Strategy of the Genes”, George Allen and Unwin Ltd, London.Google Scholar
  52. Weiss, P. (1955, 1971) Nervous system (neurogenesis). In: “Analysis of Development,” B.H. Willier, P.A. Weiss, and V. Hamburger, eds., Hafner Publishing Company, New York.Google Scholar
  53. Wiesel, T.N. (1982) Postnatal development of the visual cortex and the influence of environment. Nature, 299: 583.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Giorgio M. Innocenti
    • 1
  1. 1.Institute of AnatomyUniversite de LausanneLausanneSwitzerland

Personalised recommendations