Skip to main content

Control of Cell Number and Type in the Developing and Evolving Neocortex

  • Chapter
The Neocortex

Part of the book series: NATO ASI Series ((NSSA,volume 200))

Abstract

Large mammalian brains show “encephalization”: that is, in larger brains, the neocortex claims a disproportionately high percentage of their volume (Jerison, 1973; Jerison, this volume). The magnitude of encephalization is impressive, and its manner is strikingly regular across multiple mammalian radiations (Hofman, 1989). I would like to take advantage of this forum to speculate on the relationship of encephalization to current research on the ontogenetic regulation of neuron number and type in the cortex. The discussion is organized around three questions:

  1. 1.

    Can any persistent feature of development account for the disproportionately large volume of the cortex in large brains?

  2. 2.

    Why do developmental stabilizing mechanisms permit cortical hypertrophy? For example, in the spinal cord there is some trophic relationship between the number of neurons and peripheral muscle and sensory mass, regulated by normally-occurring cell death (Hamburger and Levi-Montalcini, 1949; reviewed in Hamburger and Oppenheim 1982; Oppenheim, 1981). Why is relative cortical volume allowed to grow so large with respect to the volume of its input and terminal zones?

  3. 3.

    Can development give us any clue as to how local areas of cortex get wired for their particular functions? Two views of the brain have competed for decades, whether the brain is best understood as a generalized computing device, or as an accretion of specialized capacities. While some of the functional change in larger brains might be described as faster, more powerful, and more general computing, the most prominent functional changes are the addition of particular, specialized skills. These skills, like echolocation, language, predictive prey tracking and the like, are apparently represented in a modular way in the brain. How can a generalized and regular neocortical hypertrophy be reconciled with the development of modularly-organized special functions?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angevine, J.B. Jr., and Sidman, R.L. (1962) Autoradiographic study of histogenesis in the cerebral cortex of the mouse. Anat. Rec, 142: 210.

    Google Scholar 

  • Beaulieu, C., and Collonier, M. (1983) The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat. J. Comp. Neurol., 217: 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, C., and Cummings, R.M. (1975) Eye opening in kittens. Vision Res., 15: 1417–1418.

    Article  PubMed  CAS  Google Scholar 

  • Bruckner, G., Mares, V., and Biesold, D. (1976) Neurogenesis in the visual system of the rat: an autoradiographic investigation. J. Comp. Neurol., 166: 245–276.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, M., O’Leary, D.D.M., and Burton, H. (1987) Potential role of thalamocortical connections in recovery of tactile function following somatic sensory cortex lesions in infant primates. Soc. Neurosci. Abs. 13: 75.

    Google Scholar 

  • Cooper, M.L., and Rakic, P. (1981) Neurogenetic gradients in the superior and inferior colliculi of the rhesus monkey. J. Comp. Neurol., 202: 309–334.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W.M. (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In: Development and Aging in the Nervous System, pp.19–41. Ed. M. Rockstein. New York: Academic Press.

    Chapter  Google Scholar 

  • Crandall, J.E., and Caviness, V.S. (1984) Thalamocortical connections in newborn mice. J. Comp. Neurol., 228: 542–556.

    Article  PubMed  CAS  Google Scholar 

  • Crossland, W.J., and Uchwat, C.J. (1982) Neurogenesis in the central visual pathways of the golden hamster. Devel. Brain Res., 5: 99–103.

    Article  Google Scholar 

  • Dreher, B., and Robinson, S.R. (1988) Development of the retinofugal pathway in birds and mammals: evidence for a common timetable. Brain Beh. Evol., 31: 369–390.

    Article  CAS  Google Scholar 

  • Ebbeson, S.O.E. (1980) The parcellation theory and its relationship to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res., 213: 179–212.

    Google Scholar 

  • Eisenberg, J.F. (1981) The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation and Behavior. Chicago: The University of Chicago Press.

    Google Scholar 

  • Elhanany, E., and White, E.L. (1990) Intrinsic circuitry: synapses involving local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex. J. Comp. Neurol., 291, 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B.L., and Pallas, S.L. (1989) Control of cell number in the developing visual system. Progress in Neurobiol., 32: 207–234.

    Article  CAS  Google Scholar 

  • Finlay, B.L., Sengelaub, D.R., and Berian, C.A. (1986) Control of cell number in the developing visual system. I. Effects of monocular enucleation. Dev. Brain Res., 28: 1–10.

    Article  Google Scholar 

  • Finlay, B.L., and Slattery, M. (1983) Local differences in amount of early cell death in neo-cortex predict adult local specializations. Science, 219: 1349–1351.

    Article  PubMed  CAS  Google Scholar 

  • Frost, D.O. (1984) Axonal growth and target selection during development: retinal projections to the ventrobasal complex and other “nonvisual” structures in neonatal Syrian hamsters. J. Comp. Neurol., 230: 576–592.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V., and Levi-Montalcini, R. (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool., 111: 457–502.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V., and Oppenheim, R.W. (1982) Naturally occurring neuronal death in vertebrates. Neuroscience Commentaries, 1: 39–55.

    Google Scholar 

  • Hendrickson, A., and Rakic, P. (1977) Histogenesis and synaptogenesis in the dorsal lateral geniculate nucleus (LGd) of the fetal monkey brain. Anat. Rec, 187: 602.

    Google Scholar 

  • Heumann, D., and Leuba, G. (1983) Neuronal death in the development and aging of the cerebral cortex of the mouse. Neuropath. & Applied Neurobio., 9: 297–311.

    Article  CAS  Google Scholar 

  • Hickey, T.L., and Hitchcock, P.F. (1984) Genesis of neurons in the dorsal lateral geniculate nucleus of the cat. J. Comp. Neurol., 228: 186–199.

    Article  PubMed  CAS  Google Scholar 

  • Hofman, M.A. (1989) On the evolution and geometry of the brain in mammals. Progress in Neurobiol., 32: 137–158.

    Article  CAS  Google Scholar 

  • Howard, B., Miller, B., and Finlay, B.L. (1989) Reorganization of visual callosal projections after early thalamic lesions in the golden hamster. Soc. Neurosci. Abst., 15: 1339.

    Google Scholar 

  • Hubel, D.H., Wiesel, T.S., and LeVay, S. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. R. Soc. Lond., 278: 377–409.

    Article  CAS  Google Scholar 

  • Innocenti, G.M. (1981) Growth and reshaping of axons in the establishment of visual callosal connections. Science, 212: 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti, G.M., and Caminiti, R. (1980) Postnatal shaping of callosal connections from sensory areas. Exp. Brain Res., 38: 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Ivy, G.O., and Killackey, H. P. (1982) Ontogenetic changes in the projections of neocortical neurons. J. Neurosci., 2: 735–743.

    PubMed  CAS  Google Scholar 

  • Jenson, H.J. (1973) Evolution of the Brain and Intelligence. New York: Academic Press.

    Google Scholar 

  • Kane, M.H., Sengelaub, D.R., and Finlay, B.L. (1984) An autoradiographic analysis of the role of cell death in regulation of neocortical cell number. Soc. Neurosci. Abs., 10: 462.

    Google Scholar 

  • Lamantia, A.-S., and Rakic, P. (1990) Cytological and quantitative characteristics of four cerebral commissures in the rehsus monkey. J. Comp. Neurol., 291: 520–537.

    Article  PubMed  CAS  Google Scholar 

  • Luskin, M.B., and Shatz, C.J. (1985a) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J. Neurosci., 5: 1062–1075.

    PubMed  CAS  Google Scholar 

  • Luskin, M.B., and Shatz, C.J. (1985b) Neurogenesis in the cat’s primary visual cortex. J. Comp. Neurol., 242: 611–631.

    Article  PubMed  CAS  Google Scholar 

  • Miller, B., Windrem, M.S., Anllo-Vento, L., and Finlay, B.L. (1987) Minor reorganization of thalamocortical projections following large neonatal thalamic lesions in the golden hamster. Soc. Neurosci. Abs., 13: 1419.

    Google Scholar 

  • Mustari, M.J., Lund, R.D., and Graubard, K. (1979) Histogenesis of the superior colliculus of the albino rat: a tritiate thymidine study. Brain Res., 164: 39–52.

    Article  PubMed  CAS  Google Scholar 

  • Naegele, J.R., Jhaveri, S., and Schneider, G.E. (1988) Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. J. Comp. Neurol., 281: 1–12.

    Google Scholar 

  • O’Kusky, J., and Colonnier, M. (1982) A laminar analysis of the number of neurons, glia and synapses in the visual cortex (area 17) of adult macaque monkeys. J. Comp. Neurol., 210: 278–290.

    Article  PubMed  Google Scholar 

  • O’Leary, D.D.M. (1989) Do cortical areas emerge from a protocortex? Trends in Neurosi., 12: 400–406.

    Article  Google Scholar 

  • Oppenheim, R.W. (1981) Neuronal death and some related regressive phenomena during neurogenesis: a selective historical review and progress report. In Studies in Developmental Neurobiology, pp. 74–133. Ed. W.M. Cowan. New York: Oxford University Press.

    Google Scholar 

  • Pagel, M.D., and Harvey, P.H. (1990) Diversity in the brain sizes of newborn mammals. Bio Science, 40: 116–122.

    Google Scholar 

  • Pallas, S.L., Gilmour, S., and Finlay, B.L. (1988) Control of cell number in the developing neocortex: I. Effects of early tectal ablation. Devel. Brain Res., 43: 1–11.

    Article  Google Scholar 

  • Purves, D. (1988) Body and Brain: A Trophic Theory of Neural Connections. Harvard University Press: Cambridge, Ma.

    Google Scholar 

  • Rakic, P. (1974) Neurons in the rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science, 183: 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P. (1988) Specification of cerebral cortical areas. Science, 241: 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, L.F., and Kalil, K. (1985) Critical stages for growth in the development of cortical neurons. J. Comp. Neurol., 237: 506–518.

    Article  PubMed  CAS  Google Scholar 

  • Rodier, P.M. (1980) Chronology of neuron development: animal studies and their clinical implications. Develop. Med., and Child Neurol., 22: 525–545.

    Article  CAS  Google Scholar 

  • Sefton, A.J., MacKay-Sim, A., Baur, L.A., and Cottee, L.J. (1981) Cortical projections to visual centers in the rat: an HRP study. Brain Res., 215: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Sengelaub, D.R., Dolan, R.P., and Finlay, B.L. (1988) Cell generation, death and retinal growth in the development of the hamster retinal ganglion cell layer: J. Comp. Neurol., 204: 311–317.

    Article  Google Scholar 

  • Shatz, C.J., and Luskin, M.B. (1986) The relationship between the geniculocortical aferents and their cortical target cells during the development of the cat’s primary visual cortex. J. Neurosci., 6: 3655–3668.

    PubMed  CAS  Google Scholar 

  • Shimada, M., and Langman, J. (1970) Cell proliferation, migration and differentaiton on the cerebral cortex of the golden hamster. J. Comp. Neurol., 139: 227–244.

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R.L. (1961) Histogenesis of the mouse retina studies with thymidine 3-H. In: The Structure of the Eye, G.K. Smelser, ed. Academic Press, New York: 487–506.

    Google Scholar 

  • Sperry, D.G. (1990) Variation and symmetry in the lumbar and thoracic dorsal root ganglion cell populations of newly metamorphosed Xenopus laevis. J. Comp. Neurol., 292: 54–64.

    Article  PubMed  CAS  Google Scholar 

  • Stanfield, B.B., O’Leary, D.D.M., and Fricks, C. (1982) Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature, (Lond.) 298: 371–373.

    Article  CAS  Google Scholar 

  • von Economo, C.F. (1929) The Cytoarchitecture of the Human Cerebral Cortex. Oxford University Press: London

    Google Scholar 

  • Walsh, C., Polley, E.H., Hickey, T.L., and Guillery, R.W. (1983) Generation of cat retinal ganglion cells in relation to central pathways. Nature, (Lond) P302: 611–614.

    Article  Google Scholar 

  • Wilder, K.C., Kirn, J., Windrem, M.S., and Finlay, B.L. (1986) Control of cell number in the developing visual system: III. Partial tectal ablation. Devel. Brain Res., 28: 23–32.

    Article  Google Scholar 

  • Williams, R.W., and Herrup, K. (1988) The control of neurons number. Ann. Rev. Neurosci., 11: 423–454.

    Article  PubMed  CAS  Google Scholar 

  • Windrem, M.S., and Finlay, B.L. (1985) Early thalamic lesions increase neonatal cell death and alter adult cytoarchitecture in the neocortex. Soc. Neurosci. Abstr., 1: 991.

    Google Scholar 

  • Windrem, M.S., Jan de Beur, S.M., and Finlay, B.L. (1986) Effects of early callosal and thalamic lesions on differentiation of cortical cytoarchitecture. Soc. Neurosci. Abst., 12: 867.

    Google Scholar 

  • Windrem, M.S., Jan de Beur, S., and Finlay, B.L. (1988) Control of cell number in the developing neocortex: II. Effects of corpus callosum transection. Devel. Brain Res., 43: 13–22.

    Article  Google Scholar 

  • Zamenhof, S., and Van Marthens, E. (1979) Brain weight, brain chemical contents and their early manipulation. In: Hahn, M.E., Jensen, C., and Dudek, B.C. eds. Development and Evolution of Brain Size: Behavioral Implications. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finlay, B.L. (1991). Control of Cell Number and Type in the Developing and Evolving Neocortex. In: Finlay, B.L., Innocenti, G., Scheich, H. (eds) The Neocortex. NATO ASI Series, vol 200. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0652-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0652-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0654-0

  • Online ISBN: 978-1-4899-0652-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics