Advertisement

The Neocortex pp 229-236 | Cite as

Brain Maps: Development, Plasticity and Distribution of Signals Beyond

  • Hendrik Van der Loos
  • Egbert Welker
  • Josef Dörfl
  • Piet V. Hoogland
Chapter
Part of the NATO ASI Series book series (NSSA, volume 200)

Abstract

Maps in the brain, here, are defined as topologically equivalent - or homeomorphic, or iso-morphic - representations of some coherent sensory or motor domain, often a sheet, in the periphery. We shall stay on the sensory side. There, the somatosensory and the visual maps are those that received most attention. Our presentation deals with a distinct part of the cortical somatosensory map in the mouse: the end-station of the whisker-to-barrel pathway. Whiskers, or, rather, whisker follicles, planted in the animal’s muzzle, are sensory organs, provided with four types of receptors (Andres, 1966) that signal to the brain through 40 to 160 large-calibre nerve fibres (Welker and Van der Loos, 1986b). These fibres, gathered in the infraorbital nerve (Fig. 1; Dörfl, 1985), a part of the sensory division of the trigeminus, enter the brainstem to end on four nuclei of termination whose main thalamic destination is the contralateral ventrobasal nucleus; from there, axons reach the “barrel cortex”, characterized by the fact that, in layer IV, it contains multicellular units, “barrels” (Fig. 2, left). Each barrel contains about 2000 neurons (Lee and Woolsey, 1975), separated by cell-poor strips, “septa”. Barrels themselves have a cell-rich “side” and a cell-poor “hollow”. They are distributed in a pattern that is homeomorphic with respect to that of the whisker follicles (Fig. 3): in stereotyped fashion both sheets, the skin and the parietal cortex, display five rows of elements, each row with its own, defined number of such elements while, caudally, both patterns terminate with four “straddling” units. The uniqueness of the system, and its usefulness for the topic we shall discuss, lies in the fact that barrels, together forming a map of the whiskerpad, are visible (Woolsey and Van der Loos, 1970). The one-to-one relationship between vibrissal follicles and barrels has been borne out by electrophysiological (Welker, 1976; Simons, 1978; Nussbaumer and Van der Loos, 1985; Armstrong-James and Fox, 1987) and deoxyglucose (Melzer et al., 1985) studies.

Keywords

Somatosensory Cortex Reticular Thalamic Nucleus Perirhinal Cortex Infraorbital Nerve Secondary Somatosensory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong-James, M., Fox, K. (1987) Spatiotemporal convergence and divergence in the rat S1 “barrel” cortex. J. Comp. Neurol., 263: 265–281.PubMedCrossRefGoogle Scholar
  2. Andres, F.L., Van der Loos, H. (1983) Cultured embryonic non-innervated mouse muzzle is capable of generating a whisker pattern. Int. J. Devel. Neurosci., 1: 319–338.CrossRefGoogle Scholar
  3. Andres, K.H. (1966) Ueber die Feinstruktur der Rezeptoren an Sinushaaren. Z. Zellforsch, 75: 339–365.PubMedCrossRefGoogle Scholar
  4. Betford, G.R., Killackey, H.P. (1979) The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat. J. Comp. Neurol., 188: 63–74.CrossRefGoogle Scholar
  5. Blue, M.E., Molliver, M.E. (1989) Serotonin influences barrel formation in developing soma-tosensory cortex of the rat. Soc. Neurosci. Abstr. 15: 419.Google Scholar
  6. Christensen, J., Woolsey, T.A. (1988) Peanut lectin staining in the mouse whisker-barrel pathway and its modification by peripheral lesions at different postnatal ages. Soc. Neurosci. Abstr. 14:1273.Google Scholar
  7. Cooper, N.G., Steindler, D.A. (1986) Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse. J. Comp. Neurol., 249: 157–169.PubMedCrossRefGoogle Scholar
  8. Dörfl, J. (1985) The innervation of the mystacial region of the white mouse. A topographical study. J. Anat. (Lond.) 142: 173–184.Google Scholar
  9. Hoogland, P.V., Welker, E., Van der Loos, H. (1987) Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolusvulgaris-leucoagglutinin and HRP. Exp. Brain Res., 68: 73–78.PubMedCrossRefGoogle Scholar
  10. Hoogland, P.V., Welker, E., Van der Loos, H., Wouterlood, F.G. (1988) The organization and structure of the thalamic afferents from the barrel cortex in the mouse; a PHA-L study. In: Cellular Thalamic Mechanisms. Bentivoglio, M., and Spreafico, R. (eds.), Elsevier, Amsterdam, pp. 151–162.Google Scholar
  11. Jeanmonod, D., Rice, F.L., Van der Loos, H. (1981) Mouse somatosensory cortex: alterations in the barrelfield following receptor injury at different early postnatal ages. Neurosci., 6: 1503–1535.CrossRefGoogle Scholar
  12. Jensen, K.F. (1987) The development of the vibrissae related neocortical afferents to somatosensory cortex of the rat. Soc. Neurosci. Abstr. 13: 77Google Scholar
  13. Lee, K.J., Woosley, T.A. (1975) A proportional relationship between peripheral innervation and cortical neuron number in the somatosensory system of the mouse. Brain Res., 99: 349–353.PubMedCrossRefGoogle Scholar
  14. Melzer, P., Van der Loos, H., Dörfl, J., Welker, E., Robert, P., Emery, D., Berrini, J.-C. (1985) A magnetic device to stimulate whiskers of freely moving or restrained small rodents: its application in a deoxyglucose study. Brain Res., 348: 229–240.PubMedCrossRefGoogle Scholar
  15. Melzer, P., Yamakado, M., Van der Loos, H., Welker, E., Dörfl, J. (1988) Plasticity in the barrel cortex of adult mouse: effects of peripheral deprivation on the functional map; a deoxyglucose study. Soc. Neurosci. Abstr. 14: 844.Google Scholar
  16. Nussbaumer, J.C., Van der Loos, H. (1985) An electro-physiological and anatomical study of projections to the mouse cortical barrelfield and its surroundings. J. Neurophysiol., 53: 686–698.PubMedGoogle Scholar
  17. Rakic, P. (1988) Specification of cerebral cortical areas. Science, 241: 170–176.PubMedCrossRefGoogle Scholar
  18. Rice, F.L., Van der Loos, H. (1977) Development of the barrels and barrelfield in the somatosensory cortex of the mouse. J. Comp. Neurol., 171: 545–560.PubMedCrossRefGoogle Scholar
  19. Simons, D.J. (1978) Response properties of vibrissa units in rat S1 somatosensory neocortex. J. Neurophysiol, 41: 798–820.PubMedGoogle Scholar
  20. Steindler, D.A., Cooper, N.G., Faissner, A., Schachner, M. (1989) Boundaries defined by adhesion molecules (luring development of the cerebral cortex: the J1/tenascin glycoprotein in the mouse somatosensory cortical barrel field. Dev. Biol., 131: 243–260.PubMedCrossRefGoogle Scholar
  21. Van der Loos, H., Woolsey, T.A. (1973) Somato-sensory cortex: structural alterations following early injury to sense organs. Science, 179: 395–398.PubMedCrossRefGoogle Scholar
  22. Van der Loos, H. (1976) Barreloids in mouse somatosensory thalamus. Neurosci. Lett., 2: 1–6.CrossRefGoogle Scholar
  23. Van der Loos, H., Dörfl, J. (1978) Does the skin tell the somatosensory cortex how to construct a map of the periphery? Neurosci. Lett., 7: 23–30.PubMedCrossRefGoogle Scholar
  24. Van der Loos, H. (1979) The development of topological equivalences in the brain. In: Neuronal growth and differentiation. Meisami, E., and Brazier, M.A.B. (eds.), Raven Press: New York, pp. 331–336.Google Scholar
  25. Van der Loos, H., Dörfl, J., Welker, E. (1984) Variation in pattern of mystacial vibrissae in mice; a quantitative study of ICR stock and of several inbred strains. J. Hered., 75: 326–336.PubMedGoogle Scholar
  26. Van der Loos, H., Welker, E. (1985) Development and plasticity of somatosensory brain maps. In: Development, Organization and Processing in Somatosensory Pathways. Rowe, M.J., and Willis, W.D., Jr. (eds.), Alan Liss: New York, pp. 53–67.Google Scholar
  27. Van der Loos, H., Welker, E., Dörfl, J., Rumo, G. (1986) Selective breeding for variations in pattern of mystacial vibrissae of mice; bilaterally symmetrical strains derived from ICR-stock. J. Hered., 77: 66–82.PubMedGoogle Scholar
  28. Waite, P.M.E. (1977) Normal nerve fibers in the barrel region of developing and adult mouse cortex. J. Comp. Neurol., 173: 165–174.PubMedCrossRefGoogle Scholar
  29. Welker, C. (1976) Receptive fields of barrels in the somatosensory neocortex of the rat. J. Comp. Neurol, 166: 173–190.PubMedCrossRefGoogle Scholar
  30. Welker, E., Van der Loos, H. (1986a) Is areal extent in cerebral cortex determined by peripheral innervation density? Exp. Brain Res., 63: 652–654.CrossRefGoogle Scholar
  31. Welker, E., Van der Loos, H. (1986b) Quantitative correlation between barrelfield size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice, bred for different patterns of mystacial vibrissae. J. Neurosci., 6: 3355–3373.PubMedGoogle Scholar
  32. Welker, E., Hoogland, P.V., Van der Loos, H. (1988a) Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp. Brain Res., 73: 411–435.PubMedCrossRefGoogle Scholar
  33. Welker, E. Leclerc, S.S., Van der Loos, H., Yamakado, M., Dykes, R.W. (1988b) Plasticity in the barrel cortex of adult mouse: effects of peripheral deprivation on the functional map; an electrophysiological recording study. Soc. Neurosci. Abstr. 14: 843.Google Scholar
  34. Welker, E., Soriano, E., Van der Loos, H. (1989) Plasticity in the barrel cortex of the adult mouse: effects of peripheral deprivation on GAD-immunoreactivity. Exp. Brain Res., 74: 441–452.PubMedCrossRefGoogle Scholar
  35. Welker, E., Van der Loos, H., Dörfl, J., Soriano, E. (1990) The possible role of GABAergic innervation in plasticity of adult cerebral cortex. In: The Neocortex: Ontogeny and Phylo-geny, Finlay, B.L., Innocenti, G., Scheich, H. (eds), Plenum Press: New York.Google Scholar
  36. Woolsey, T.A., Van der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res., 17: 205–242.PubMedCrossRefGoogle Scholar
  37. Yarris, L.M., Chiaia, N.L., Bennett-Clarke, C.A., Jacquin, M.F., Haring, J.H. Macdonald, G.J., Rhoades, R.W. (1989) Serotonin immunoreactive fibers yield a complete map of the body surface in somatosensory cortex of perinatal rats. Soc. Neurosci. Abstr. 15: 874.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Hendrik Van der Loos
    • 1
  • Egbert Welker
    • 1
  • Josef Dörfl
    • 1
  • Piet V. Hoogland
    • 2
  1. 1.Institute of AnatomyUniversity of LausanneLausanneSwitzerland
  2. 2.Department of AnatomyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations