Fossil Brains and the Evolution of the Neocortex

  • Harry J. Jerison
Chapter
Part of the NATO ASI Series book series (NSSA, volume 200)

Abstract

The fossil record of neocortex is based on the impression of the rhinal fissure and the olfactory bulbs on the cranial cavity of fossil skulls. A cast molded by this cavity is called an “endo-cast,” and in fossil mammals it looks enough like a brain to be called a “fossil brain.” Neocortex is identified (and in a sense defined) as the forebrain region of the endocast that is dorsal to the rhinal fissure and posterior to the olfactory tubercle. Errors in identifying neocortex in fossil endocasts are likely to be about the same as in living brains when these superficial markings rather than histological evidence of lamination are the basis of the identification.

Keywords

Olfactory Bulb Brain Size Living Species Main Olfactory Bulb Relative Brain Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P. (1988) A phylogenetic analysis of the Primates. In Benton, M.J. (ed.) The phytogeny and classification of the tetrapods, Vol. 2: Mammals, Systematics Association Special Volume No. 35B, pp. 143–75. Clarendon Press, Oxford, U.K.Google Scholar
  2. Baron, G., Frahm, H.D., Bhatnagar, K.P., and Stephan, H. (1983) Comparison of brain structure volumes in Insectivora and Primates. III. Main olfactory bulb (MOB). Journal für Hirnforschung, 24: 551–558.PubMedGoogle Scholar
  3. Benton, M.J. (ed.) (1988) The phylogeny and classification of the tetrapods, 2 Vols. Systematics Association Special Volume No. 35A, B, Clarendon Press, Oxford, U.K.Google Scholar
  4. Carroll, R.L. (1988) Vertebrate paleontology and evolution. New York, Freeman.Google Scholar
  5. Crompton, A.W., Taylor, C.R., and Jagger, J.A. (1978) Evolution of homoeothermy in mammals. Nature (London) 272: 333–6.CrossRefGoogle Scholar
  6. Edinger, T. (1975) Paleoneurology, 1804-1966: An annotated bibliography. Advances in Anatomy, Embryology and Cell Biology, 49: 12–258.Google Scholar
  7. Harman, P.J. (1957) Paleoneurologic, neoneurologic, and ontogenetic aspects of brain phylo-geny. James Arthur Lecture on the Evolution of the Human Brain. New York: American Museum of Natural History.Google Scholar
  8. Hodos, W., and Campbell, C.B.G. (1969) Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76: 337–350.CrossRefGoogle Scholar
  9. Holloway, R.L. (1981) Volumetric and asymmetry determinations on recent hominid endocasts: Spy I and II, Djebel IHROUD I, and the Sale ‘Homo erectus specimens, with some notes on Neanderthal brain size. American Journal of Physical Anthropology, 55: 385–393.PubMedCrossRefGoogle Scholar
  10. Jerison, H.J. (1973) Evolution of the Brain and Intelligence. New York, Academic Press, xiv+482 pp.Google Scholar
  11. Jerison, H.J. (1982) Allometry, brain size, cortical surface, and convolutedness. In Armstrong, E. & Falk, D. (eds.). Primate Brain Evolution: Methods and Concepts, pp. 77–84. New York, Plenum.CrossRefGoogle Scholar
  12. Jerison, H.J. (in press). Fossil evidence on the evolution of the neocortex. In Jones, EG and Peters, A (eds) Cerebral Cortex, Vol. 8. New York, Plenum.Google Scholar
  13. Johnson, J.I. Kirsch, J.A.W., and Switzer, R.C. (1982) Fifteen characters which adumbrate mammalian geneology. Brain, Behavior and Evolution, 20: 72–83.PubMedCrossRefGoogle Scholar
  14. Kemp, T.S. (1982) Mammal-like reptiles and the origin of mammals. London and New York, Academic Press.Google Scholar
  15. Kemp, T.S. (1988) Interrelationships of the Synapsida. In Benton, M.J. (ed.) Thephylogeny and classification of the tetrapods, Vol. 2: Mammals, Systematics Association Special Volume No. 35B, pp. 1–22. Clarendon Press, Oxford, U.K.Google Scholar
  16. Kielan-Jaworowska, Z. (1983) Multituberculate endocranial casts. Paleovertebrata, Montpellier, 13(1-2): 1–12.Google Scholar
  17. Kielan-Jaworowska, Z. (1984) Evolution of the therian mammals in the Late Cretaceous of Asia. Part VI. Endocranial casts of eutherian mammals. Paleonotologica Polonica, No. 46-1984: 151–171, Pls. 29-31.Google Scholar
  18. Kielan-Jaworowska, Z. (1986) Brain evolution in Mesozoic mammals. In Lillegraven, J. A. (ed.) G.G. Simpson Memorial Volume. Contributions to Geology, University of Wyoming, Special Paper 3: 21-34.Google Scholar
  19. Kielan-Jaworowska, Z., Presley, R., and Poplin, C. (1986) The cranial vascular system intaen-ioloabidoid multituberculate mammals. Phil Trans. Roy. Soc. (London), B313: 525–602.Google Scholar
  20. Lande, R. (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution, 33: 402–416.CrossRefGoogle Scholar
  21. Lieberman, P. (1984) The biology and evolution of language. Harvard Univ. Press, Cambridge, Mass.Google Scholar
  22. Northcutt, R.G. (1985) The brain and sense organs of the earliest vertebrates: Reconstruction of a morphotype. In Foreman, R.E., Gorbman, A., Dodd, J.M., & Olsson, R. (eds.) Evolutionary biology of primitive fishes. 81–112. New York, Plenum.CrossRefGoogle Scholar
  23. Pickford, M. (1988) The evolution of intelligence: A palaeontological perspective. In Jerison, H.J., and Jerison, I.L. (eds.) Intelligence and evolutionary biology, pp. 175–198. Heidelberg, Berlin, New York, Springer-Verlag.CrossRefGoogle Scholar
  24. Prothero, D.R., Manning, E.M., and Fischer, M. (1988) The phylogeny of the ungulates. In Benton, M.J. (ed.) The phylogeny and classification of the tetrapods, Vol. 2: Mammals, Systematics Association Special Volume No. 35B, pp. 201–34. Clarendon Press, Oxford, U.K.Google Scholar
  25. Radinsky, L.B. (1967) Relative brain size: A new measure. Science, 155: 836–838.PubMedCrossRefGoogle Scholar
  26. Radinsky, L. (1973) Evolution of the canid brain. Brain, Behavior and Evolution, 7: 169–202.PubMedCrossRefGoogle Scholar
  27. Radinsky, L. (1975) Viverrid neuroanatomy. Journal of Mammalogy, 56: 130–150.PubMedCrossRefGoogle Scholar
  28. Radinsky, L. (1976) The brain of Mesonyx, a Middle Eocene mesonychid condylarth. Fieldiana Geology, 33: 323–337.Google Scholar
  29. Radinsky, L. (1977) Brains of early carnivores. Paleobiology, 3: 333–349.Google Scholar
  30. Radinsky, L. (1978) Evolution of brain size in carnivores and ungulates. American Naturalist, 112: 815–831.CrossRefGoogle Scholar
  31. Radinsky, L. (1979) The Fossil Record of Primate Brain Evolution. The James Arthur Lecture. New York, American Museum of Natural History. 27 pp.Google Scholar
  32. Radinsky, L. (1981) Brain evolution in extinct South American ungulates. Brain, Behavior and Evolution, 18: 169–187.PubMedCrossRefGoogle Scholar
  33. Romer, A.S. (1966) Vertebrate Paleontology, 3rd ed., Univ. of Chicago Press, Chicago, Illinois.Google Scholar
  34. Sarnat, H.B., and Netsky, M.G. (1974) Evolution of the Nervous System. New York, London, and Toronto, Oxford University Press.Google Scholar
  35. Savage, R.J.G., and Long, M.R. (1986) Mammal Evolution: An Illustrated Guide. London: British Museum (Natural History).Google Scholar
  36. Schmidt-Nielsen, K. (1984) Scaling: Why is animal size so important. Cambridge, England, Cambridge Univ. Press.CrossRefGoogle Scholar
  37. Stanley, S.M. (1979) Macroevolution: Pattern and Process. San Francisco, W.H. Freeman.Google Scholar
  38. Stephan, H., Frahm, H., and Baron, G. (1981) New and revised data on volumes of brainstruc-tures in insectivores and primates. Folia Primatologica, 35: 1–29.CrossRefGoogle Scholar
  39. Stevens, S.S. (1946) On the theory of scales and measurement. Science, 103: 677–680.CrossRefGoogle Scholar
  40. Toga, A.W., Samaie, M., and Payne, B.A. (1989) Digital rat brain: A computerized atlas. Brain Research Bulletin, 22: 323–333.PubMedCrossRefGoogle Scholar
  41. Wilson, J. A. (1971) Early tertiary vertebrate faunas, Vieja Group. Trans-Pecos Texas: Agrio-choeridae and Merycoidodontidae. Texas Memorial Museum Bulletin, 18: 1–83.Google Scholar
  42. Wind, J. (1976) Phylogeny of the human vocal tract. Annals of the New York Academy of Sciences, 280: 612–630.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Harry J. Jerison
    • 1
  1. 1.Department of Psychiatry and Biobehavioral SciencesUCLA School of MedicineLos AngelesUSA

Personalised recommendations