The Neocortex pp 193-197 | Cite as

Morphological Characterization of ALZ-50 Immunoreactive Cells in the Developing Neocortex of Kittens

  • Carlos J. A. De 
  • López-Mascaraque L. 
  • Valverde F. 
Part of the NATO ASI Series book series (NSSA, volume 200)


Alz-50 is a monoclonal antibody isolated from brain tissue of patients with Alzheimer’s disease (Wolozin et al., 1986). This antibody recognizes an antigenic protein of 68 kilodaltons in neurons involved in the formation of neuritic plaques and neurofibrillary tangles. It has been reported recently that Alz-50 immunoreactive (ir) neurons are found in normal fetal and neonatal human brains and in brain tissue from neonatal individuals with Down’s syndrome (Wolozin et al., 1988).


White Matter Visual Cortex Down Syndrome Neurofibrillary Tangle Senile Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Ghoul, W.M., and Miller, M.W. (1989) Transient expression of Alz-50 immunoreactivity in developing rat neocortex: a marker for naturally occurring neuronal death? Brain Res., 481: 361–367.PubMedCrossRefGoogle Scholar
  2. Beach, T.G., and McGeer, E.G. (1988) Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain Res., 463: 357–361.PubMedCrossRefGoogle Scholar
  3. Chun, J.J.M., and Shatz, C.J. (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J. Comp. Neurol., 282: 555–569.PubMedCrossRefGoogle Scholar
  4. Grundke-Iqbal, I., Ibqal, K., Quinlan, M., Tung, Y.-C., Zaidi, M.S., and Wisniewski, H.M. (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. J. Biol. Chem., 261: 6084–6089.PubMedGoogle Scholar
  5. Hamre, K.M., Hyman, B.T., Goodlett, C.R., West, J.R., and Van Hoesen, G.W. (1989) Alz-50 immunoreactivity in the neonatal rat: changes in development and co-distribution with MAP-2 immunoreactivity. Neurosci. Lett., 98: 264–271.PubMedCrossRefGoogle Scholar
  6. Kostovic, I., and Rakic, P. (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J. Neurocytol., 9: 219–242.PubMedCrossRefGoogle Scholar
  7. Ksiezak-Reding, H., Davies, P., and Yen, S.-H. (1988) Alz-50, a monoclonal antibody to Alzheimer’s disease antigen, cross-reacts with Tau proteins from bovine and normal human brain. J. Biol. Chem., 263: 7943–7947.PubMedGoogle Scholar
  8. Luskin, M.B., and Shatz, C.J. (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J. Neurosci., 5: 1062–1075.PubMedGoogle Scholar
  9. Pearson, R.C.A., Eisiri, M.M., Hiorns, R.W., Wilcock, G.K., and Powell, T.P.S. (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 82: 4531–4534.PubMedCrossRefGoogle Scholar
  10. Rogers, J., and Morrison, J.H. (1985) Quantitative morphology and regional laminar distribution of senile plaques in Alzheimer’s disease. J. Neurosci, 5: 2801–2808.PubMedGoogle Scholar
  11. Selkoe, DJ. (1989) Biochemistry of altered brain proteins in Alzheimer’s disease, Ann. Rev. Neurosci., 12: 463–490.PubMedCrossRefGoogle Scholar
  12. Tsumoto, T., Sato, H., and Sobue, K. (1988) Immunohistochemical localization of a membrane-associated, 4.1-like protein in the rat visual cortex during postnatal development. J. Comp. Neurol., 271: 30–43.PubMedCrossRefGoogle Scholar
  13. Valverde, F., and Facal-Valverde, M.V. (1987) Transitory population of cells in the temporal cortex of kittens. Dev. Brain Res., 32: 283–288.CrossRefGoogle Scholar
  14. Valverde, F., and Facal-Valverde, M.V. (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens. A correlated Golgi and electron microscopic study. J. Comp. Neurol., 269: 168–192.PubMedCrossRefGoogle Scholar
  15. Wahle, P., and Meyer, G. (1987) Morphology and postnatal changes of transient NPY-ir neuronal populations during early postnatal development of the cat visual cortex. J. Comp. Neurol., 261: 165–195.PubMedCrossRefGoogle Scholar
  16. Wähle, P., and Meyer, G. (1989) Early postnatal development of vasoactive intestinal polypep-tide-and peptide histidine isoleucine-immunoreactive structures in the cat visual cortex. J. Comp. Neurol., 282: 215–248.PubMedCrossRefGoogle Scholar
  17. Wolozin, B.L., Pruchnicki, A., Dickson, D.W., and Davies, P. (1986) A neuronal antigen in the brains of Alzheimer patients. Science, 232: 648–650.PubMedCrossRefGoogle Scholar
  18. Wolozin, B.L., Scicutella, A., and Davies, P. (1988) Reexpression of a developmentally regulated antigen in Down syndrome and Alzheimer disease. Proc. Nad. Acad. Sci., USA, 85: 6202–6206.CrossRefGoogle Scholar
  19. Wood, J.G., Mirra, S.S., Pollock, N.J., and Binder, L.I. (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (t). Proc. Nad. Acad. Sci. USA, 83: 4040–4043.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Carlos J. A. De 
    • 1
  • López-Mascaraque L. 
    • 1
  • Valverde F. 
    • 1
  1. 1.Instituto de NeurobiologíaSantiago Ramón y Cajal (CSIC)MadridSpain

Personalised recommendations