The Neocortex pp 185-192 | Cite as

Nonpyramidal Neurons in the Mammalian Hippocampus: Principles of Organization and Development

  • Eduardo Soriano
  • José A. Del Río
  • Isidro Ferrer
Part of the NATO ASI Series book series (NSSA, volume 200)


The hippocampus has traditionally been considered a simple cortex, with some primitive structural characteristics. For example, its particular cytoarchitectonics, with the main cell types densely packed in single layers and the segregated distribution of many hippocampal afferents, resembles the organization of phylogenetically more primitive cortices, like those of reptiles (see Lohman, this volume). In this paper we show that, in spite of this relatively simple organization, the hippocampal cortex contains essentially the same types of nonpyramidal cells or local circuit neurons (as we will call them here) as the neocortex. However, in contrast to the neocortex, there is a particular laminar distribution of nonpyramidal cells in the hippocampus and area dentata. We then focus on the neurogenesis of hippocampal nonpyramidal cells. We will provide evidence that the simpler organization of the hippocampal cortex may help us to understand some general developmental mechanisms related to the genesis and maturation of cortical interneurons.


Granule Cell Neuronal Cell Death GABAergic Neuron Basket Cell Axon Initial Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, D. G. (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J. Comp. Neurol., 182: 851.PubMedCrossRefGoogle Scholar
  2. Amaral, D. G., and Kurz, J. (1985) The time of originof cells demonstrating glutamic acid decarboxylase-like immunoreactivity in the hippocampal formation of the rat. Neurosci. Lett., 59: 33.PubMedCrossRefGoogle Scholar
  3. Angevine, J. B., Jr. (1965) Time of neuron origin in the hippocampal region. An autoradiogra-phic study in the mouse. Exp. Neurol. Suppl., 2: 1Google Scholar
  4. Blackstad, T. W. (1956) Commissural connections in the hippocampal region in the rat, with special reference to their mode of termination. J. Comp. Neurol., 105: 417.PubMedCrossRefGoogle Scholar
  5. Cajal, S. R. (1911) Histologie du Systéme Nerveux del’ homme et des Vertebrés. Vol II. Paris: Maloine.Google Scholar
  6. Chun, J. J. M., Nakamura, M. J., and Shatz, C. J. (1987) Transient cells of the developing mammaliam telencephalon are peptide-immunoreactive neurons. Nature, 325: 617.PubMedCrossRefGoogle Scholar
  7. Cobas, A., Welker, E., Fairén, A., Kraftsik, R., and Van der Loos, H. (1987) The GABAergic neurons in the barrel cortex of the mouse: an analysis using neuronal archetypes. J. Neurocytol., 16:843PubMedCrossRefGoogle Scholar
  8. Cobas, A., and Fairén, A. (1988) GABAergic neurons of different morphological classes are cogenerated in the mouse barrel cortex. J. Neurocytol., 17: 511.PubMedCrossRefGoogle Scholar
  9. De Felipe, J., Hendry, S.H.C., and Jones, E. G. (1989) Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc. Nat. Acad. Sci. USA, 86: 2093.CrossRefGoogle Scholar
  10. Fairén, A., De Felipe, J., and Regidor, J. (1984) Nonpyramidal cells: general account, In: Cerebral Cortex, Vol. I. Peters, A., and Jones, E.G., eds., Plenum press: New York.Google Scholar
  11. Fairén, A., Cobas, A., and Fonseca, M. (1986) Times of generation of glutamic acid decarbox-ylase immunoreactive neurons in mouse somatosensory cortex. J. Comp. Neurol., 251: 67.PubMedCrossRefGoogle Scholar
  12. Ferrer, L., Hernández-Martí, M., Bernet, E., Calopa, M. (1989a) Formation and growth of cerebral convolutions. II.-Cell death in the gyrus suprasylvius and adjoining sulci in the cat. Dev. Brain Res., 45: 303.CrossRefGoogle Scholar
  13. Ferrer, I., Serrano, T., and Soriano, E. (1989b) Naturally occurring cell death in the subicular complex and hippocampus in the rat during development, Neurosci. Res., in press.Google Scholar
  14. Finlay, B.L., and Slattery, M. (1983) Local differences in the amount of cell death in theneo-cortex predict adult locqal specializations. Science, 219: 1349.PubMedCrossRefGoogle Scholar
  15. Freund, T.F., and Antal, M. (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336: 170.PubMedCrossRefGoogle Scholar
  16. Freund, T.F., and Gulyás, A.I. (1989) Interneurons are the primary targets of GABAergic basal forebrain neurons innervating the neocortex. European J. Neurosci., Suppl. 2: 376.Google Scholar
  17. Frotscher, M., Leranth, C., Lübbers, K., and Oertel, W.H. (1984) Commissural afferents innervate glutamate decarboxylase immunoreactive non-pyramidal neurons in the guinea pig hippocampus. Neurosci. Lett., 46: 137.PubMedCrossRefGoogle Scholar
  18. Frotscher, M., Kraft, J., and Zorn, U. (1988) Fine structure of identified neurons in the primate hippocampus: A combined Golgi/EM study in the baboon. J. Comp. Neurol., 275: 254PubMedCrossRefGoogle Scholar
  19. Frotscher, M. (1988b) Neuronal elements in the hippocampus and their synaptic connections, in: Advances in Anatomy, Embryology and Cell Biology, Vol. 111: Neurotransmission in the hippocampus, Frotsher, M., Kugler, P., Misgeld, U., and Zilles, K., eds., Springer-Verlag, Berlin.CrossRefGoogle Scholar
  20. Katsamaru, H., Kosaka, T., Heizmann, C.W., and Hama, H. (1988) Immunocytochemical study of GABAergic neurons containing the Calcium binding protein parvalbumin in the rat hippocampus. Exp. Brain Res., 72: 347.Google Scholar
  21. Kosaka, T., Hama, K., and Wu, J.Y. (1984) GABAergic synaptic boutons in the granule cell layer of the rat dentate gyrus. Brain Res., 293: 353.PubMedCrossRefGoogle Scholar
  22. Kosaka, T., Kosaka, K., Tateishi, K., Hamaoka, I., Yanaihara, N., Wu, J-Y., and Hama, K. (1985) GABAergic neurons containing CCK-8-like and/or VIP-like immunoreactivities in the rat hippocampus and dentate gyrus, J. Comp. Neurol., 239: 420.PubMedCrossRefGoogle Scholar
  23. Kosaka, T., Katsumaru, H., Hama, K., Wu, J.Y., and Heizmann, C. W. (1987) GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and den-tategyrus. Brain Res., 419: 119.PubMedCrossRefGoogle Scholar
  24. Lacaille, J.C., and Schwatzkroin, A. (1988) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I: Intracellular response characteristics, synaptic responses and morphology. J. Neurosci., 8: 1400.PubMedGoogle Scholar
  25. Lorente de Nó, R. (1934) Studies on the structure of the cerebral cortex. II. Continuationof the study of the ammonic system. J. Psychol. Neurol. (Lpz), 46: 113.Google Scholar
  26. Lübbers, K., and Frostcher, M. (1987) Fine structure and synaptic connections of identified neurons in the rat fascia dentada. Anat. Embryol., 177:1.PubMedCrossRefGoogle Scholar
  27. Lübbers, K., Wolff, J.R., and Frotscher, M. (1985) Neurogenesis of GABAergic neurons in the rat dentate gyrus: A combined autoradiographic and immunocytochemical study. Neurosci. Lett., 62: 317.PubMedCrossRefGoogle Scholar
  28. Luskin, M.B., and Shatz, C.J. (1985) Studies of the earliest generated cells of the cat’s visual cortex: Cogeneration of subplate and marginal zones. J. Neurosci., 5:1062.PubMedGoogle Scholar
  29. Marín-Padilla, M. (1978) Dual origin of the mammaliam neocortex and evolution of the cortical plate. Anat. Embryol., 152: 109.PubMedCrossRefGoogle Scholar
  30. McConnell, S.K., Ghosh, A., and Shatz, C.J. (1989) Subplate neurons pioneer the 1st axon pathway from the cerebral cortex. Science, 245:4921CrossRefGoogle Scholar
  31. Miller, M.W. (1985) Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. Dev. Brain. Res., 23: 187.CrossRefGoogle Scholar
  32. Misgeld, U., and Frotscher, M. (1986) Postsynaptic-GABAergic inhibition of non-pyramidal neurons in the guinea-pig hippocampus. Neuroscience, 19:193.PubMedCrossRefGoogle Scholar
  33. Nitsch, R., Soriano, E., and Frotscher, M. (1989) Parvalbumin immunoreactive cells in the rat hippocampus: electron microscopy and coexistence with GABA. European J. Neurosci., Suppl. 2: 749.Google Scholar
  34. Peters, A. (1984) Chandelier cells, In: Peters, A., and Jones, E.G., eds., Cerebral Cortex, Vol. 1. Plenum Press: New York.Google Scholar
  35. Ribak, C.E., Vaughn, J.E., and Saito, K. (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res., 140:315.PubMedCrossRefGoogle Scholar
  36. Ribak, C.E., and Seress, L. (1983) Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study. J. Neurocytol., 12: 577.PubMedCrossRefGoogle Scholar
  37. Schaffer, K. (1892) Beitrag zu histologie der Ammonshornformation, Arch. Mikrosk. Anat., 39:611.CrossRefGoogle Scholar
  38. Schiander, M., and Frotscher, M. (1986) Non-pyramidal neurons in the guinea pig hippocampus. A combined Golgi-electron microscope study. Anat. Embryol., 174: 35.CrossRefGoogle Scholar
  39. Seress, L., and Ribak, C.E. (1983) GABAergic cells in the dentate gyrus appear to be local circuit and projections neurons. Exp. Brain Res., 50: 173.PubMedGoogle Scholar
  40. Seress, L., and Ribak, C.E. (1985) A combined Golgi-electron microscopic study of non-pyramidal neurons in CA1 area of the hippocampus. J. Neurocytol, 14: 717.PubMedCrossRefGoogle Scholar
  41. Shatz, C.J., Chun, U.M., and Luskin, M.B. (1989) The role of the subplate in the development of the mammalian telencephalon, In: Cerebral Cortex, Development and maturation of the cerebral cortex, Vol. 7. Peters, A., and Jones, E.G., eds., Plenum Press: New York.Google Scholar
  42. Sloviter, R.S., and Nilaver, G. (1987) Immunocytochemical localization of GABA-, chole-cystokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. J. Comp. Neurol., 256: 42.PubMedCrossRefGoogle Scholar
  43. Sloviter, R.S. (1989) Calcium-binding protein (Calbindin-D28K) and parvalbumin immunohis-tochemistry: Localization in the hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J. Comp. Neurol., 280: 183.PubMedCrossRefGoogle Scholar
  44. Somogyi, P., Nunzi, M.G., Gorio, A., and Smith, A.D. (1983a) A new type of specific in-terneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res., 259: 137.PubMedCrossRefGoogle Scholar
  45. Somogyi, P., Smith, A.D., Nunzi, M.G., Gorio, A., Takagi, H., and Wu, J.Y., (1983b) Glutamate decarboxylase immunoreactivity in the hippocampus of the cat: Distribution of im-munoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J. Neurosci, 3: 1450.PubMedGoogle Scholar
  46. Somogyi, P., Freund, T.P., Hodgson, A.J., Somogyi, J., Beroukas, D., and Chubb, I.W. (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res., 332: 143.PubMedCrossRefGoogle Scholar
  47. Soriano, E., Cobas, A., and Fairén, A. (1986) Asynchronism in the neurogenesis of GABAergic and non-GABAergic neurons in the mouse hippocampus. Dev. Brain Res., 30: 88.CrossRefGoogle Scholar
  48. Soriano, E., and Farinas, I. (1987) Chandelier cells in the rat hippocampal region. Neurosci. Suppl., 22: 5124.Google Scholar
  49. Soriano, E., and Frotscher, M. (1989) A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Res., in press.Google Scholar
  50. Soriano, E., Cobas, A., and Fairén, A. (1989a) Neurogenesis of glutamic acid decarboxylase immunoreactive cells in the hippocampus of the mouse. I: regio superior and regio inferior. J. Comp. Neurol., 281: 586.PubMedCrossRefGoogle Scholar
  51. Soriano, E., Cobas, A., and Fairén, A. (1989b) Neurogenesis of glutamic acid decarboxylase immunoreactive cells in the hippocampus of the mouse. II: area dentata. J. Comp. Neurol., 281:603.PubMedCrossRefGoogle Scholar
  52. Soriano, E., Nitsch, R., and Frotscher, M. (1989c) Axo-axonic chandelier cells in the rat fascia dentata: Golgi-EM and immunocytochemical studies. J. Comp. Neuroi., 293: 1.CrossRefGoogle Scholar
  53. Swanson, L.W., Kîhler, C., and Björklund, A. (1987) The limbic region. I. The septohippocampal system. In: Handbook of Chemical Neuroanatomy, Integrated Systems of the CNS, Part I., Vol. 5: Björklund, A., Hökfelt, T., and Swanson, L.W., eds, Elsevier, Amsterdam.Google Scholar
  54. Szentágothai, J., and Arbib, M.A. (1974) Conceptual models of neural organization. Neurosci. Res. Program Bull., 12: 307.Google Scholar
  55. Tömbol, T., Somogyi, G., and Hajdu, F. (1978) Golgi study on cat hippocampal formation. Anat. Embryol., 153:331.PubMedCrossRefGoogle Scholar
  56. Valverde, F. (1983) A comparative approach to neocortical organization based on the study of the brain of the hedgehog (Erinaceus europaeus). In: Ramon y Cajal’s Contribution to the Neurosciences, Grisolia, S., Guerri, C., Samson, F., Norton S., and Reinoso-Suarez, F., eds., Elsevier, Amsterdam.Google Scholar
  57. Valverde, F., and Facal-Valverde, M.V. (1987) Transitory populations of cells in the temporal cortex of kittens. Dev. Brain Res., 32: 283.CrossRefGoogle Scholar
  58. Valverde, F., and Facal-Valverde, M.V. (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens. A correlated Golgi and electron microscopic study. J. Comp. Neurol., 269: 168.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Eduardo Soriano
    • 1
  • José A. Del Río
    • 1
  • Isidro Ferrer
    • 2
  1. 1.Unidad de Biología Celular, Facultad de BiologíaUniversidad de BarcelonaBarcelonaSpain
  2. 2.Unidad de Neuropatología, Departamento de Anatomía PatológicaHospital Príncipes de EspañaHospitalet de LLobregat, BarcelonaSpain

Personalised recommendations