The Neocortex pp 175-183 | Cite as

Ontogeny and Structure of the Radial Goal Fiber System of the Developing Murine Cerebrum

  • Verne S. CavinessJr.
  • Jean-Paul Mission
  • Takao Takahashi
  • Jean-Francois Gadisseux
Part of the NATO ASI Series book series (NSSA, volume 200)


Neurons of cerebral cortical structures undergo their terminal divisions in a periventricular generative epithelium, the ventricular zone (VZ: Boulder Committee, 1970; Sidman and Rakic, 1973). Its final mitosis completed, the young cell must migrate centrifugally to achieve its position in the developing cortex. It is thought that the cell is guided in its migration by contact with the surfaces of specialized cells of astroglial lineage, the radial glial cells (Rakic 1972,1988; Nowakowski and Rakic, 1979; Misson et al., 1989a). A monopolar radial glial form, the Bergmann glial cell, is thought to serve an analogous role as guide to neuronal migration in the developing cerebellar cortex (Rakic, 1971; Edmondson and Hatten, 1987). These bipolar and monopolar radial astroglial forms are thus essential to cellular interactions of fundamental significance for histogenesis of cortical structures of the central nervous system.


Growth Cone Neuronal Migration Intermediate Zone Cortical Plate Fiber System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulder Committee. (1970) Embryonic vertebrate central nervous system: revised terminology. Anat.Rec, 166: 257–261.CrossRefGoogle Scholar
  2. Caviness, V.S., Jr., and Sidman, R. L. (1973) Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol., 148: 141–151.PubMedCrossRefGoogle Scholar
  3. Caviness, V.S., Jr. (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H] thymidine autoradiography. Dev. Brain Res., 4: 293–302.CrossRefGoogle Scholar
  4. Choi, B.H. (1988) Prenatal gliogenesis in the developing cerebrum of the mouse. Glia, 1: 308–316.PubMedCrossRefGoogle Scholar
  5. Crandall, J.E., and Caviness, V.S., Jr. (1984) Axonal strata of the cerebral wall in embryonic mice. Dev. Brain Res., 14: 185–195.CrossRefGoogle Scholar
  6. Cochard, P., and Paulin, D. (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J. Neurosci., 4: 2080–2094.PubMedGoogle Scholar
  7. Dahl, D., Rueger, D., and Bignami, A. (1981) Vimentin, the 57,000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur. J. Cell Biol., 24: 191–196.PubMedGoogle Scholar
  8. del Cerro, M., and Swarz, J.R. (1976) Prenatal development of Bergmann glial fibers in rodent cerebellum. J. Neurocytol., 5: 669–676.PubMedCrossRefGoogle Scholar
  9. Edmondson, J.C., and Hatten, M.E. (1987) Glial-guided granule neuron migration in vitro: A high-resolution time-lapse video microscope study. J. Neurosci., 7: 1928–1934.PubMedGoogle Scholar
  10. Edwards, M.A., Yamamoto, M., and Caviness, V.S., Jr. (1989) Organization of radial glial and related cells in the developing murine CNS: An analysis based upon a new monoclonal p antibody marker. J. Neurosci. in press.Google Scholar
  11. Escobar, M.I., Pimienta, H., Caviness, V.S., Jr., Jacobson, M., Crandall, J.E., and Kosik, K. S. (1986) Architecture of apical dendrites in the murine neocortex: Dual apical dendritic systems. Neuroscience, 17: 975–989.PubMedCrossRefGoogle Scholar
  12. Gadisseux, J-F., and P. Evrard (1985) Glial-neuronal relationship in the developing central nervous system. Dev. Neurosci., 7: 12–32.PubMedCrossRefGoogle Scholar
  13. Gadisseux, J-F., Evrard, P., Misson, J-P., and Caviness, V.S., Jr. (1989a) Dynamic structure of the radial glial fiber system of the developing murine cerebral wall: An immunocytochemical analysis. Dev. Brain Res. in press.Google Scholar
  14. Gadisseux, J-F., Evrard, P., Misson, J-P., Caviness, V.S., Jr. (1989b) Dynamic changes in the density of radial glial fibers of the developing murine cerebral wall: A quantitative immuno-histological analysis. J. Comp. Neurol., in press.Google Scholar
  15. Gadisseux, J.-F., Kadhim, H.J., Van de Bosch de Aguilar, P. Caviness, V.S., Jr., and Evrard, P. (1989c) Neuron migration within the radial glial fiber system of the developing murine cerebrum: An electron microscopic autoradiographic analysis. Dev. Brain Res., in press.Google Scholar
  16. Hockfield, S., and McKay, R.D.G. (1985) Identification of major cell classes in the developing mammalian nervous system. J. Neurosci., 5: 3310–3328.PubMedGoogle Scholar
  17. Houle, J., and Fedoroff, S. (1983) Temporal relationships between the appearance of vimentin and neural tube development. Dev. Brain Res., 9: 189–196.CrossRefGoogle Scholar
  18. Levitt, P., and Rakic, P. (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol., 193: 815–840.PubMedCrossRefGoogle Scholar
  19. Levitt, P., Cooper, M.L., and Rakic, P. (1981) Coexistence of neuronal glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. J. Neurosci., 1: 27–39.PubMedGoogle Scholar
  20. Levitt, P., Cooper, M.L., and Rakic, P. (1983) Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev. Biol., 96; 472–484.PubMedCrossRefGoogle Scholar
  21. Luskin, M.B., Pearlman, A.L., and Sanes, J.R. (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron, 1: 635–647.PubMedCrossRefGoogle Scholar
  22. Misson, J-R., Edwards, M.A., Yamamoto, M., and Caviness, V.S., Jr. (1988a) Identification of radial glial cells within the developing murine central nervous system: Studies based upon a new immunohistochemical marker. Dev. Brain Res., 44: 95–108.CrossRefGoogle Scholar
  23. Misson, J-P., Edwards, M.A., Yamamoto, M., and Caviness, V.S., Jr. (1988b) Mitotic cycling of radial glial cells of the fetal murine cerebral wall: A combined autoradiographic and immunohistochemical study. Dev. Brain Res., 38: 183–190.CrossRefGoogle Scholar
  24. Misson, J-P., Austin, C., Takahashi, T., Cepko, C., and Caviness, V.S., Jr. (1989a) Migrating neurons of the murine cerebrum ascend in parallel to radial fiber: Analysis based upon double-labeling of migrating neurons and radial fibers. Soc. Neurosci. Abstr. 15: 599.Google Scholar
  25. Misson, J-P., Takahashi, T., and Caviness, V. S., Jr. (1989b) Early ontogeny of radial and other astroglial cells in murine cerebral cortex. J. Comp. Neurol. submitted.Google Scholar
  26. Nowakowski, R.S., and Rakic, P. (1979) The mode of migration of neurons to the hippocampus: A Golgi and electron microscopic analysis in foetal rhesus monkey. J. Neurocytol., 8: 694–718.CrossRefGoogle Scholar
  27. Pixley, S.R., Kobayashi, Y., and Vellis, J.D. (1984) A monoclonal antibody against vimentin: Characterization. Dev. Brain Res., 15: 185–199.CrossRefGoogle Scholar
  28. Price, J., and Thurlowe, L. (1988) Cell lineage in the rat cerebral cortex: A study using retrovi-ral-mediated gene transfer. Development, 104: 473–482.PubMedGoogle Scholar
  29. Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopic study in Macacus rhesus. J. Comp. Neurol., 141: 283–312.PubMedCrossRefGoogle Scholar
  30. Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol., 145: 61–84.PubMedCrossRefGoogle Scholar
  31. Rakic, P. (1988) Specification of cerebral cortical areas. Science, 241: 170–176.PubMedCrossRefGoogle Scholar
  32. Ramon y Cajal, S. (1911) Histologie du Systeme Nerveux de l’Homme et des Vertebres. Vol II, Maloine, Paris. Reprinted by Consejo Superior de Investigaciones Cientificas, Instituto Ramon y Cajal, Madrid.Google Scholar
  33. Schmechel, D.E., and Rakic, P. (1979) A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat. Embryol., 156: 115–152.PubMedCrossRefGoogle Scholar
  34. Sidman, R.L., and Rakic, P. (1973) Neuronal migration, with special reference to developing human brain: A review. Brain Res., 62: 1–35.PubMedCrossRefGoogle Scholar
  35. Takahashi, T., Misson, J-P., Caviness, V.S., Jr. (1989) Glial process elongation and branching in the developing murine neocortex: A qualitative and quantitative immunohistochemical analysis. J. Comp. Neurol. submitted.Google Scholar
  36. Valentino, K.L., Jones, E.G., and Kane, S.A. (1984) Expression of GFAP immunoreactivity during development of long fiber tracts in the rat CNS. Dev. Brain Res., 9: 317–336.CrossRefGoogle Scholar
  37. Walsh, C., and Cepko, C.L. (1988) Clonally related cortical cells show several migration patterns. Science, 241: 1342–1345.PubMedCrossRefGoogle Scholar
  38. Waechter, R.V., and Jaensch, B. (1972) Generation time of the matrix cells during embryonic brain development: An autoradiographic study in rats. Brain Res., 46: 235–250.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Verne S. CavinessJr.
    • 1
  • Jean-Paul Mission
    • 1
    • 2
  • Takao Takahashi
    • 1
  • Jean-Francois Gadisseux
    • 1
    • 3
  1. 1.Department of Neurology, Developmental NeurobiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Developmental NeurobiologyUniversity of LiegeBelgium
  3. 3.Developmental Neurology UnitUniversity of Louvain Medical SchoolBrusselsBelgium

Personalised recommendations