The Galápagos Islands and Their Relation to Oceanographic Processes in the Tropical Pacific

  • Francisco P. Chavez
  • Richard C. Brusca
Part of the Topics in Geobiology book series (TGBI, volume 8)


Equatorial regions are characterized by significant interannual variability in oceanographic processes that are linked to changes in climate throughout the globe (Rassmusson and Wallace, 1983). Due in part to their role in global climate variability, equatorial regions—and particularly the equatorial Pacific—have received considerable attention from meteorologists and physical oceanographers during past decades. Recent measurements made during National Oceanographic and Atmospheric Administration (NOAA)-sponsored programs such as the Equatorial Pacific Ocean Climate Studies (EPOCS) and the Tropical Ocean Global Atmosphere (TOGA), as well as National Science Foundation (NSF)-sponsored programs such as Tropic Heat, have led to significant advances in our understanding of the oceanographic processes at work in the equatorial Pacific.


Trade Wind Equatorial Pacific Ocean Galapagos Island Upwelled Water South Equatorial Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R.N., Clague, D.A., Klitgord, K.D., Marshall, M., and Nishimori, R.K., 1975, Magnetic and petrologic variations along the Galápagos Spreading Center and their relations to the Galápagos melting anomaly., Geol. Soc. Amer. Bull. 86:683–694.CrossRefGoogle Scholar
  2. Bailey, K., 1976, Potassium-argon ages from the Galápagos Islands, Science 192:465–467.PubMedCrossRefGoogle Scholar
  3. Baitis, H.W., and Lindstrom, M.M., 1980, Geology, petrography, and petrology of Pinzon Island, Galápagos Archipelago, Contr. Mineral Petrol. 72:367–386.CrossRefGoogle Scholar
  4. Bakun, A., 1987, Monthly variability in the ocean habitat off Peru as deduced from maritime observations, 1953 to 1984, in: The Peruvian Anchoveta and Its Upwelling Ecosystem: Three Decades of Change, ICLARM Studies and Reviews 15 (D. Pauly and I. Tsukayama, eds.), International Center for Living Aquatic Resources Management, Manila, Philippines, pp. 46-74.Google Scholar
  5. Barber, R.T., and Chavez, F.P., 1983, Biological consequences of El Niño, Science 222:1203–1210.PubMedCrossRefGoogle Scholar
  6. Barber, R.T., and Chavez, F.P., 1986, Ocean variability in relation to living resources during the 1982/83 El Nino, Nature 319:279–285.CrossRefGoogle Scholar
  7. Bellon, H., Saenz, R., and Tournon, J., 1983, K-Ar radiometric ages of lavas from Cocos Island (eastern pacific), Mar. Geol. 54:M17–M23.CrossRefGoogle Scholar
  8. Bjerknes, J., 1966, A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature, Tellus 18:820–829.CrossRefGoogle Scholar
  9. Bow, C.S., 1979, The geology and petrogenesis of the lavas of Floreana and Santa Cruz islands, Galápagos Archipelago. Ph.D. Thesis, Univ. Oregon, Eugene, Oregon, 308 pp.Google Scholar
  10. Broecker, W.S., and Peng, T.H., 1982, Tracers in the Sea, Eldiog Press, Palisades, New York, 690 pp.Google Scholar
  11. Brusca, R.C., 1987, Biogeographic relationships of Galápagos marine isopod crustaceans, Bull. Mar. Sci. 41:268–281.Google Scholar
  12. Cane, M.A., 1983, Oceanographic events during El Niño, Science 222:1189–94.PubMedCrossRefGoogle Scholar
  13. Carranza, L., 1891, Contra-corriente martima, observada en Paita y Pacasmayok, Boln. Soc. Geogr. Lima 2:344–345.Google Scholar
  14. Carrillo, C.N., 1889, Hidrografia oceanica, Boln. Soc. Geogr. Lima 1:72–110.Google Scholar
  15. Chavez, F.P., 1986, The legitimate El Niño current, Tropical Ocean-Atmosphere Newsletter 34:1.Google Scholar
  16. Chavez, F.P., 1987, The annual cycle of SST along the coast of Peru, Tropical Ocean-Atmosphere Newsletter 37:4–6.Google Scholar
  17. Chavez, F.P., 1989, Size distribution of phytoplankton in the central and eastern tropical Pacific, Global Biochemic. Cycles 3:27–35.CrossRefGoogle Scholar
  18. Chavez, F.P., Barber, R.T., and Soldi, H.S., 1984, Propagated temperature changes during onset and recovery of the 1982/83 El Niño, Nature 309:47–49.CrossRefGoogle Scholar
  19. Chavez, F.P., and Barber, R.T., 1985, Plankton production during El Niño, in: International Conference on the TOGA Scientific Programme. World Climate Research Publication, Geneva, pp. VI, 23–32.Google Scholar
  20. Chavez, F.P., Buck, K.R., and Barber, R.T., 1990, Phytoplankton taxa in relation to primary production in the equatorial Pacific, Deep-Sea Research 37:1733–1752.CrossRefGoogle Scholar
  21. Cox, A., 1983, Ages of the Galápagos islands: Patterns of evolution in Galápagos organisms, in: Patterns of Evolution in Galápagos Organisms (R. I. Bowman, M. Berson, and A. E. Leviton, eds.) American Association for the Advancement of Science, Pacific Division, San Francisco.Google Scholar
  22. Cox, A., and Dalrymple, G.B., 1966, Palaeomagnetism and potassium-argon ages of some volcanic rocks from the Galápagos Islands, Nature 209:776–777.CrossRefGoogle Scholar
  23. Dalrymple, G.G., and Cox, A., 1968, Palaeomagnetism, potassium-argon ages and petrology of some volcanic rocks from the Galápagos Islands, Nature 217:1–8.CrossRefGoogle Scholar
  24. Durham, J.W., 1963, Paleogeographic conclusions in light of the biological data, in: Pacific basin biogeography pp. 355–365, Tenth Pacific Science Congress, Mishop Mus. Press, Honolulu, Hawaii.Google Scholar
  25. Durham, J.W., 1966, Coelenterates, especially stony corals, from the Galápagos and cocos Islands, in: The Galápagos (R. I. Bowman, ed.), Proceedings of the Symposia of the Galápagos International Scientific Project, University of California Press, Berkeley, California.Google Scholar
  26. Eguiguren, V., 1894, Las lluvias de Piura, Boln. Soc. Geogr. Lima 4:241–258.Google Scholar
  27. Enfield, D.B., 1981, Thermally driven wind variability in the planetary boundary layer above Lima, J. Geophys. Res. 86:2005.CrossRefGoogle Scholar
  28. Enfield, D.B., and Allen, J.S., 1980, On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America, J. Phys. Oceanogr. 10:557–578.CrossRefGoogle Scholar
  29. Enfield, D.B., and Newberger, P.A., 1985, Peru coastal winds during 1982–83, Proceedings of the 9th Annual Climate Diagnostics Workshop, NOAA, Washington, D.C., pp. 147-156.Google Scholar
  30. Enfield, D.B., Cornejo-Rodriguez, M.P., Smith, R.L., and Newberger, P.A., 1987, The equatorial source of propagating variability along the Peru Coast during the 1982–83 El Niño, J. Geophys. Res. 92:14335–14346.CrossRefGoogle Scholar
  31. Fairbridge, R.W., 1973, Glaciation and plate migration, in: Implications of Continental Drift to the Earth Sciences, Vol. 1 (D. H. Tarling and S. K. Runcorn, eds.), Academic Press, New York, pp. 35–49.Google Scholar
  32. Firing, E., Lukas, R., Sadler, J., and Wyrtki, K., 1983, Equatorial undercurrent disappears during 1982–1983 El Niño, Science 222:1121–1123.PubMedCrossRefGoogle Scholar
  33. Geist, D.J., McBirney, A.R., and Duncan, R.A., 1985, Geology of Sante Fe Island: The oldest Galápagos Volcano, J. Volcan. Geotherm. Res. 26:203–121.CrossRefGoogle Scholar
  34. Gill, A.E., Rasmusson, E., 1983, The 1982–83 climate anomaly in the equatorial Pacific, Nature 306:229–234.CrossRefGoogle Scholar
  35. Glynn, P.W., and Wellington, G.M., 1983, Corals and Coral Reefs of the Galápagos Islands, University of California Press, Berkeley, California, XVI, 330 pp.Google Scholar
  36. Gunther, E.R., 1936, A report on oceanographical investigations in the Peru Coastal current, Discover Rep. 13:107–276.Google Scholar
  37. Hall, M.L., 1983, Origin of Espanola Island and the age of terrestrial life on the Galápagos Islands, Science 221:545–547.PubMedCrossRefGoogle Scholar
  38. Hall, M.L., Ramon, P., and Yepes, H., 1980, The subaerial origin of Española (Hood) Island and the age of terrestrial life in the Galápagos, Noticias de Galápagos 31:41–52.Google Scholar
  39. Halpern, D., Knox, R.A., Luther, D.S., and Philander, S.G.H., 1989, Estimates of equatorial upwelling between 140° and 110°W during 1984, J. Geophys. Res. 94:8018–8020.CrossRefGoogle Scholar
  40. Hansen, D.V., and Paul, C.A., 1984, Genesis of long waves in the equatorial Pacific, J. Geophys. Res. 89:10431–10440.CrossRefGoogle Scholar
  41. Harrison, D.E., and Schopf, P.S., 1984, Kelvin-wave-induced anomalous advection and the onset of surface warming in El Niño Events, Mon. Weather Rev. 112:923–933.CrossRefGoogle Scholar
  42. Hayes, S.P., 1985, Sea level and near surface temperature variability at the Galápagos Islands, 1979–1983, in: El Niño in the Galápagos Islands: The 1982–1983 Event (G. Robison and E. Del Piño, eds.), Charles Darwin Foundation for the Galápagos Islands, Quito, Ecuador, 49-81.Google Scholar
  43. Hayes, S.P., and Halpern, D., 1984, Correlation of current and sea level in the eastern equatorial Pacific, J. Phys. Oceanogr. 14:811–824.CrossRefGoogle Scholar
  44. Hayes, S.P., Mangum, L.J., Barber, R.T., Huyer, A., and Smith, R.L., 1987, Hydrographic variability west of the Galápagos Islands during the 1982/83 El Niño, Prog. Oceanog. 17:137–162.CrossRefGoogle Scholar
  45. Hey, R.N., and Vogt, P.R., 1977, Rise axis jumps and sub-axial flow near the Galápagos Hotspot?, Tectophysics 37:41–52.CrossRefGoogle Scholar
  46. Hey, R.N., Johnson, G.L., and Lowrie, A., 1977, Recent plate motions in the Galápagos area, Geol. Soc. Amer. Bull. 8:1385–1403.CrossRefGoogle Scholar
  47. Holden, J.C., and Dietz, R.S., 1972, Galápagos gore, NazCoPac triple junction and Carnegie/Cocos Ridges, Nature 235:266–269.CrossRefGoogle Scholar
  48. Horel, J.D., and Cornejo-Garrido, A.G., 1986, Convection along the coast of northern Peru during 1983; Spatial and temporal variation of clouds and rainfall, Mon. Weather Rev. 114:2091–2105.CrossRefGoogle Scholar
  49. Houvenaghel, G.T., 1984, Oceanographic setting of the Galápagos Islands, in: Key environments, Galápagos (R. Perry, ed.), pp. 43–54, Pergamon Press, New York.Google Scholar
  50. Jones, J.H., 1969, Surfacing of Pacific Equatorial Undercurrent: direct observations, Science 163:1449–1450.PubMedCrossRefGoogle Scholar
  51. Kogelschatz, J., Solorzano, L., Barber, R.T., and Mendoza, P., 1985, Oceanographic conditions in the Galápagos Islands during the 1982/83 El Niño, in: El Niño in the Galápagos Islands: The 1982/1983 Event (G. Robison and E. M. del Piño, eds.), Charles Darwin Foundation for the Galápagos Islands, Quito, Ecuador, pp. 91-123.Google Scholar
  52. Legeckis, R., 1977, Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite, Science 197:1179–1181.PubMedCrossRefGoogle Scholar
  53. Legeckis, R., 1986, Long waves in the equatorial Pacific and Atlantic Oceans during 1983, Ocean-Air Interactions 1:1–101.Google Scholar
  54. Lukas, R., 1986, The termination of the equatorial undercurrent in the Eastern pacific, Progress in Oceanography 16:63–90.CrossRefGoogle Scholar
  55. Lukas, R., Hayes, S.P., and Wyrtki, K., 1984, Equatorial sea level response during the 1982–1983 El Niño, J. Geophys. Res. #89:10,425–10,430.Google Scholar
  56. Madden, R.A., and Julian, R., 1972, Description of global scale circulation scales in the tropics with a 40–50 day period, J. Atmos. Sci. 29:1109–1123.CrossRefGoogle Scholar
  57. Mangum, L.J., and Hays, S.P., 1984, The vertical structure of the zonal pressure gradient in the eastern equatorial Pacific, J. Geophys. Res. 89:10,441–10,449.Google Scholar
  58. McBirney, A.R., and Williams, H., 1969, Geology and petrology of the Galápagos Islands, Geol. Soc. Amer. Mem. 118:1–197.Google Scholar
  59. McCreary, J.P., 1976, Eastern tropical ocean response to changing wind systems: with application to El Niño, J. Phys. Oceanogr. 6:632–645.CrossRefGoogle Scholar
  60. McPhaden, M.J., Freitag, H.P., Hayes, S.P., Taft, B.A., Chien, Z., and Wyrtki, K., 1988, The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986, J. Geophys. Res. 93:10,589-10,603.Google Scholar
  61. Mears, E.G., 1943, The Ocean Current “The Child.” Smithsonian Inst., Washington, D.C., report for 1943.Google Scholar
  62. Meyers, G., 1979, Annual variation in the slope of the 14#C isotherm along the equator in the Pacific Ocean, J. Phys. Oceanog. 9:885–891.CrossRefGoogle Scholar
  63. Miller, L., Cheney, R.L., and Douglas, B., 1988, Geosat altimeter observations of Kelvin Waves and the 1986–87 El Niño, Science 239:52–54.PubMedCrossRefGoogle Scholar
  64. Morgan, W.J., 1971, Convection plumes in the lower mantle, Nature (Lond.) 230:42–43.CrossRefGoogle Scholar
  65. Morgan, W.J., 1972, Plate motions and deep mantle convection, Geol. Soc. Amer. Mem. 132:7–22.Google Scholar
  66. Okuda, T., Trejos de Suescum, R., Valencia, M., and Rodriguez, A., 1983, Variacion estacional de la posicion del frente ecuatorial y su efecto sobre la fertilidad de las aguas superficiales ecuatorianas, Acta Oceanografica del Pacifico, INOCAR, Ecuador, 2:53–84.Google Scholar
  67. Pak, H., and Zaneveld, J.R.V., 1973, The Cromwell Current on the east side of the Galápagos Islands, J. Geophys. Res. 78:7845–7859.CrossRefGoogle Scholar
  68. Pezet, F.A., 1896, La contra-corriente “El Niño”, en la costa norte del Peru, Boln. Soc. Geogr. Lima 5:457–461.Google Scholar
  69. Philander, S.G.H., 1978, Instabilities of zonal equatorial currents: II, J. Geophys. Res. 83:3679–3682.CrossRefGoogle Scholar
  70. Philander, S.G.H., 1985, El Niño and La Niña, J. Atmos. Sci. 42:2652–2662.CrossRefGoogle Scholar
  71. Philander, S.G. H., and Seigel, A.D., 1985, Simulation of El Niño of 1982–83, in: Hydrodynamics of the Equatorial Ocean (J. C. J. Nihoul, ed.) pp. 517-542.Google Scholar
  72. Rasmusson, E.M., and Carpenter, T.H., 1982, Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño, Mon. Weather Rev. 110:354–384.CrossRefGoogle Scholar
  73. Rasmusson, E.M., and Wallace, J.M., 1983, Meteorological aspects of the El Niño/Southern Oscillation, Science 222:1195–1202.PubMedCrossRefGoogle Scholar
  74. Reid, J.L., 1959, Evidence of a South Equatorial Countercurrent in the Pacific Ocean, Nature 184:209–210.CrossRefGoogle Scholar
  75. Robalino, M., 1985, Registres Meteorologicos de la estacion cientifica Charles Darwin para 1982–1983, El Niño en las Islas Galápagos: El Evento de 1982–1983, Charles Darwin Foundation for the Galápagos Islands, Quito, Ecuador.Google Scholar
  76. Schott, G., 1931, Der Peru-Strom und seine nordlichen Nachbargebiete in normaler und anormaler Ausbildung., Ann. Hydrogr. Marit. Meteorol. 59:161-196; 200-213; 240–252.Google Scholar
  77. Schweigger, E., 1945, La “legitima” corriente del Nino, Boln. Comp. Administr. Guano 21:255–296.Google Scholar
  78. Simkin, T., 1984, Geology of Galápagos Islands, Key environments, Galápagos (R. Perry, ed.), Pergamon Press, New York, pp. 15–42.Google Scholar
  79. Sverdrup, H.U., Johnson, M.W., and Flemming, R.H., 1942, The Oceans: Their Physics, Chemistry and General Biology, Prentice-Hall, Englewood Cliffs, New Jersey, 1060 p.Google Scholar
  80. Tsuchiya, M., 1985, Subsurface countercurrents in the Pacific Ocean, J. Mar. Res. 13:145–175.Google Scholar
  81. Vail, P.R., and Mitchum, R.M., Jr., 1979, Global cycles of relative changes of sea level from seismic stratigraphy, Amer. Assoc. Petrol. Geol. Mem. 29:469–472.Google Scholar
  82. Walker, G.T., 1924, Correlations in seasonal variations of weather. IX. A further study of world weather, Mem. Indian Meteorol. Dep. 24:275–332.Google Scholar
  83. Wilson, J.T., 1963, Hypothesis of Earth’s behavior, Nature 198:925–929.CrossRefGoogle Scholar
  84. Wooster, W.S., 1969, Equatorial front between Peru and the Galápagos, Deep-Sea Research (Suppl.) 16:407–419.Google Scholar
  85. Wooster, W.S., and Hedgepeth, J.W., 1966, The Oceanographic setting of the Galápagos, in: The Galápagos. Proceedings of a Symposium of the Galápagos International Scientific Project (R. I. Bowman, ed.) pp. 100–101, University of California Press, Berkeley, California.Google Scholar
  86. Wooster, W.S., and Guillen, O., 1974, Characteristics of El Niño in 1972, J. Mar. Res. 32:387–404.Google Scholar
  87. Wyrtki, K., 1966, Oceanography of the eastern equatorial Pacific Ocean, Oceanogr, Mar. Biol. Annu. Rev. 4:22–68.Google Scholar
  88. Wyrtki, K., 1975, El Niño, the dynamic response of the equatorial Pacific Ocean to atmospheric forcing, J. Phys. Oceanogr. 5:572–584.CrossRefGoogle Scholar
  89. Wyrtki, K., 1981, An estimate of equatorial upwelling in the Pacific, J. Phys. Oceanogr. 11:1205–1214.CrossRefGoogle Scholar
  90. Wyrtki, K., 1982, The southern Oscillation, Ocean-Atmosphere interaction and El Niño, Mar. Technol. Soc. J. 16(1):3–10.Google Scholar
  91. Wyrtki, K., 1984, The slope of sea level along the equator during the 1982/1983 El Niño, J. Geophys. Res. 89:10,419-10,424.Google Scholar
  92. Wyrtki, K., 1985, Water displacements in the Pacific and the genesis of El Niño cycles, J. Geophys. Res. 90:7129–7132.CrossRefGoogle Scholar
  93. Wyrtki, K., and Eldin, G., 1982, Equatorial upwelling events in the Central Pacific, J. Phys. Oceanogr. 12:984–988.CrossRefGoogle Scholar
  94. Wyrtki, K., and Kilonsky, B., 1984, Mean water mass and current structure during the Hawaii-to-Tahiti Shuttle Experiment, J. Phys. Oceanogr. 14:242–254.CrossRefGoogle Scholar
  95. Wyrtki, K., and Wenzel, J., 1984, Possible gyre-gyre interactions in the Pacific Ocean, Nature 309:538–540.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Francisco P. Chavez
    • 1
  • Richard C. Brusca
    • 2
  1. 1.Monterey Bay Aquarium Research InstitutePacific GroveUSA
  2. 2.Department of Marine InvertebratesSan Diego Museum of Natural HistorySan DiegoUSA

Personalised recommendations