The Role of High Performance Liquid Chromatography in Radiochemical/Radiopharmaceutical Synthesis and Quality Assurance

  • Thomas E. Boothe
  • Ali M. Emran


High Performance Liquid Chromatography(HPLC) is a versatile tool in radiopharmaceutical chemistry. Instrumentation, methods and applications have been reviewed as recently as 19861. HPLC has been used for numerous areas associated with the production of radiopharmaceuticals including:
  • analysis of radiochemical and chemical starting materials;

  • determination of both labelled and unlabelled reaction products;

  • optimization of reaction conditions;

  • purification, including separation from chemical and radiochemical impurities;

  • determination of specific activity;

  • determination of radiochemical and chemical purity;

  • determination of the stability of the radiolabelled product during storage, including determination of radiolysis products;

  • validation of other methods of analysis, such as TLC;

  • determination of metabolites.


High Performance Liquid Chromatography POSitron Emission Tomography High Performance Liquid Chromatography Radiochemical Purity United States PharmaCOpeia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Wieland, M. Tobes, and T. Mangner, ed., “Analytical and Chromatographic Techniques in Radiopharmaceutical Chemistry”, Springer-Verlag, New York (1986).Google Scholar
  2. 2.
    The United States Pharmacopeia, XXII, The United States Pharmacopeial Convention, Inc., Rockville, MD (1989).Google Scholar
  3. 3.
    C. Dorschel, J. Ekamanis, J. Oberholtzer, F. Warren, Jr. and B. Bidlingmeyer, LC Detectors: Evaluation and Practical Implications of Linearity, Anal. Chem. 61: 951A (1989).Google Scholar
  4. 4.
    T. Boothe, R. Finn, M. Vora, A. Emran, P. Kothari and S. Wukovnig, Increasing Role of High Performance Liquid Chromatography (HPLC) in Radiopharmaceutical Analysis, in “Synthesis and Applications of Isotopically Labeled Compounds 1985”, R. Muccino, ed., Elsevier Science Publishers, Amsterdam (1986).Google Scholar
  5. 5.
    T.-Z. Zhou, W. Hirth, W. Heineman and E. Deutsch, Quantitative HPLC Determination of [99mTc]Pertechnetate in Radiopharmaceuticals and Biological Samples-I. Technique Development, Nucl. Med. Biol. 15: 493 (1988).Google Scholar
  6. 6.
    R. Nieuwland, H. Das and C. de Ligny, Improvement of the Reproducibility of Ion-Pair HPLC of 99mTc(Sn)EHDP Complexes and the Influence of the Sn(II) Concentration on the Composition of the Reaction Mixture, Appl. Radiat. Isop. 40: 153 (1989).CrossRefGoogle Scholar
  7. 7.
    T. Tji, H. Vink, W. Gelsema and C. de Ligny, Determination of the Oxidation State of Tc in 99Tc(Sn)EHDP, 99mTc(Sn)EHDP, 99Tc(Sn)MDP and 99mTc(Sn)MDP Complexes. Characterization of Tc(III)-, Tc(IV)- and Tc(V)EHDP Complexes, Appl. Radiat. Isot. 41: 17 (1990).CrossRefGoogle Scholar
  8. 8.
    Y. Huigen, W. Gelsema and C. de Ligny, Separation of 99mTc(Sn)-EHDP Complexes by Chromatography on TSK G 2000 PW, Using Its Ion Exchange Properties, Appl. Radiat. Isop. 41: 335 (1990).CrossRefGoogle Scholar
  9. 9.
    M. Holland, W. Heineman and E. Deutsch, Technetium-99m Complexes of Dimethylaminomethylene Diphosphonate(DMAD)-I. Anion Exchange HPLC Characterization of 99mTc(NaBH4)-DMAD Mixtures, Nucl. Med. Biol. 16: 301 (1989).Google Scholar
  10. 10.
    M. Holland, J. Bugaj, W. Heineman and E. Deutsch, Technetium-99m Complexes of Dimethylaminomethylene Diphosphonate(DMAD)-II. Biological Distributions of 99mTc-DMAD Components Isolated by Anion Exchange HPLC, Nucl. Med. Biol. 16: 313 (1989).Google Scholar
  11. 11.
    H. Kung, B.-L. Liu and S. Pan, Kinetic Study of Ligand Exchange Reaction Between 99mTc-Glucoheptonate and N-Benzyl-N-methyl-piperazinyl-bis(aminoethanethiol)(BPA-BAT), Appl. Radiat. Isop. 40: 677 (1989).CrossRefGoogle Scholar
  12. 12.
    J. Baldas, J. Bonnyman and Z. Ivanov, Use of High Performance Liquid Chromatography for the Structural Identification of Technetium-99m Radiopharmaceuticals at the NCA Level, J. Nucl. Med. 30: 1240 (1989).PubMedGoogle Scholar
  13. 13.
    M. Corlija, K. Tubergen, W. Volbert and R. Holmes, Contribution of Radiolytically Induced Dissociation of 99mTc-d,l-HMPAO in Aqueous Solutions, J. Nucl. Med. 31: 806 (abstract) (1990).Google Scholar
  14. 14.
    M. Marmion, K. Libson and E. Deutsch, New Mixed Tc/Sn Complexes: Relevance to Nuclear Medicine, J. Nucl. Med. 31: 807 (abstract) (1990).Google Scholar
  15. 15.
    A. Nunn, HPLC as the Archetypical Animal, Nucl. Med. Biol. 16: 187 (1989).Google Scholar
  16. 16.
    A. Zimmer, J. Kazikiewicz, S. Spies and S. Rosen, Rapid Miniaturized Chromatography for 111In Labeled Monoclonal Antibodies: Comparison to Size Exclusion High Performance Liquid Chromatography, Nucl. Med. Biol. 15: 717 (1988).Google Scholar
  17. 17.
    J. Reynolds, S. Del Vecchio, H. Sakahara, M. Lora, J. Carrasquilla, R. Neumann and S. Larsen, Anti-murine Anitibody Response to Mouse Monoclonal Antibodies: Clinical Findings and Implications, Nucl. Med. Biol. 16: 121 (1989).Google Scholar
  18. 18.
    P. Garg, G. Archer Jr., D Bigner and M. Zalutsky, Synthesis of Radioiodinated N-Succinimidyl Iodobenzoate: Optimization for Use in Antibody Labelling, Appl. Radiat. Isop. 40: 485 (1989).CrossRefGoogle Scholar
  19. 19.
    M. Himmelbach and R. Wahl, Studies on the Metabolic Fate of 111In-labeled Antibodies, Nucl. Med. Biol. 16: 839 (1989).Google Scholar
  20. 20.
    K. Yokoyama, J. Reynolds, C. Paik, V. Sood, P. Maloney, S. Larson and R. Reba, Immunoreactivity Affects the Biodistribution and Tumor Targzting of Radiolabeled Anti-P97 Fab Fragment, J. Nucl. Med. 31: 202 (1990).PubMedGoogle Scholar
  21. 21.
    J. Zielinski, J. Larner, P. Hoffer and R. Hochberg, The Synthesis of llßMethoxy-[16a-123I]Iodoestradiol and Its Interaction with the Estrogen Receptor In Vivo and In Vitro, J. Nucl. Med. 30: 209 (1989).PubMedGoogle Scholar
  22. 22.
    J. Ulin, A. Gee, P. Malmborg, J. Tedroff and B. Langstrom, Synthesis of Racemic (+) and (-) N-[methyl-11C]nomifensine, a Ligand for Evaluation of Monoamine Re-Uptake Sites by Use of Positron Emission Tomography, Apol. Radiat. Isop. 40: 171 (1989).CrossRefGoogle Scholar
  23. 23.
    J. Vlek, K. Feitsma, T. van der Mark, B. Drenth, A. Paans and W. Vaalburg, Synthesis of d-[11C]Oxyphenonium Iodide, a Potential Radioligand for In Vivo Visualization of Human Cholinergic Muscarinic Receptor-sites by Positron Emission Tomography, Appl. Radiat. Isop. 41: 453 (1990).CrossRefGoogle Scholar
  24. 24.
    M. Maeda, Y. Koga, T. Fukumura and M. Kojima, d-[11C]Octopamine Synthesis Using [11C]Cyanide: Chemical and Enzymatic Approaches for the [11C]Cyanohydrin Synthesis, Appl. Radiat. Isop. 41: 463 (1990).CrossRefGoogle Scholar
  25. 25.
    K. Suzuki, O. Inoue, K. Tamate and F. Mikado, Production of 3-N[11C]Methylspiperone with High Specific Activity and High Radiochemical Purity for PET Studies: Suppression of Its Radiolysis, Appl. Radiat. Isop. 41: 593 (1990).CrossRefGoogle Scholar
  26. 26.
    S. Moerlein, D. Parkinson and M. Welch, Radiosynthesis of High Effective Specific-activity [123I]SCH 23982 for Dopamime D-1 Receptor-based SPECT Imaging, Appl. Radiat. Isop. 41: 381 (1990).CrossRefGoogle Scholar
  27. 27.
    N. Satyamurthy, J. Barrio, G. Bida, S.-C. Huang, J. Mazziotta and M. Phelps, 3-(2’-[18F]Fluoroethyl)spiperone, a Potent Dopamime Antagonist: Synthesis, Structural Analysis and In-Vivo Utilization in Humans, Appl. Radiat. Isop. 41: 113 (1990).CrossRefGoogle Scholar
  28. 28.
    D. Kiesewetter, R. Kawai, M. Chelliah, E. Owens, C. McLellan and R. Blasberg, Preparation and Biological Evaluation of 18F-labeled Benzamide Analogues as Potential Dopamine D2 Receptor Ligands, Nucl. Med. Biol. 17: 347 (1990).Google Scholar
  29. 29.
    D. Kiesewetter, K. Rice, M. Mattson and R. Finn, Radiochemical Synthesis of [18F]-Fluo rot hienylcyclohexylpiperdine([18F]FTCP), J. Labelled Compd. Radiopharm. 27: 277 (1989).CrossRefGoogle Scholar
  30. 30.
    M. Adam, J. Grierson and S. Jivan, An Improved HPLC System for the Analysis and Purification of Organic Amine Radiopharmaceuticals, Appl. Radiat. Isot. 40: 91 (1989).CrossRefGoogle Scholar
  31. 31.
    W. Rzeszotarski, W. Eckelman and B. Francis, Synthesis and Evaluation of Radioiodinated Derivatives of 1-Azabicyclo(2.2.2)oct-3-yl alphahydroxy-alpha-(4-iodophenyl)phenylacetate as Potential Radiopharmaceuticals, J. Med. Chem. 27: 156 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Emran, Radiofluorination of Aromatic Acids for Application in Receptor Studies, in “Proceedings of the 199th ACS National Meeting”, Boston, MA, April (1990).Google Scholar
  33. 33.
    C. Prenant, L. Barre and C. Crouzel, Synthesis of [11C1–3- Quinuclidinylbenzilate(QNB), J. Labelled Compd. Radiopharm. 27: 1257 (1989).CrossRefGoogle Scholar
  34. 34.
    S. Ram and L. Spicer, Direct Incorporation of [11C]Carbon Dioxide for Labeling Bioactive Molecules. An Application to [11c] Labeled Tamoxifen, J. Labelled Compd. Radiopharm. 27: 661 (1989).CrossRefGoogle Scholar
  35. 35.
    D. Yang, A. Emran, W. Tansey, R. Tilbury, L. Kasi, K. Wright, L. Kuang, S. Wallace, and E. Kim, Radiosynthesis of Fluorotamoxifen Analogs, J. Nucl. Med. 31: 903 (abstract) (1990).Google Scholar
  36. 36.
    M. Adam and S. Jivan, Synthesis and Purification of L-6-[18F]Fluorodopa, Appl. Radiat. Isop. 39: 1203 (1988).CrossRefGoogle Scholar
  37. 37.
    J. Chen, S.-J Huang, R. Finn, K. Kirk, B. Francis, H. Adams, R. Cohen and C. Chiueh, Quality Control Procedure for 6-[18F]Fluoro-L-DOPA: A Presynaptic PET Imaging Ligand for Brain Dopamine Neurons, J. Nucl. Med. 30: 1249 (1989).PubMedGoogle Scholar
  38. 38.
    V. Pike, M. Kensett, D. Turton, S. Waters and D. Silvester, Labelling Agents for PET Studies of the Dopaminergic System-Some Quality Assurance Methods, Experiences and Issues, Appl. Radiat. Isop. 41: 483 (1990).CrossRefGoogle Scholar
  39. 39.
    C. Lemaire, M. Guillaume, R. Cantineau and L. Christiaens, No-CarrierAdded Regioselective Preparation of 6-[18F]Fluoro-L-DOPA, J. Nucl. Med. 31: 1247 (1990).PubMedGoogle Scholar
  40. 40.
    H. Coenen, K. Franken, P. Kling and G. Stoecklin, Direct Electrophilic Radiofluorination of Phenylalanine, Tyrosine and DOPA, Appl. Radiat. Isop. 39: 1243 (1988).CrossRefGoogle Scholar
  41. 41.
    O. DeJesus, J. Sunderland, J. Nickles, J. Mukherjee and E. Appelman, Synthesis of Radiofluorinated Analogues of m-Tyrosine as Potential L-Dopa Tracers via Direct Reaction with Acetylhypofluorite, Appl.Radiat. Isop. 41: 433 (1990).CrossRefGoogle Scholar
  42. 42.
    A. Gelbard, A. Cooper, Y. Asano, E. Nieves, S. Filc-Dericco and K. Rosenspire, Methods for the Enzymatic Synthesis of Tyrosine and Phenylalanine Labeled with Nitrogen-13, Appl. Radiat. Isop. 41: 229 (1990).CrossRefGoogle Scholar
  43. 43.
    O. DeJesus, J. Mukherjee and R. Khalifah, Synthesis of Radiobrominated m-Tyrosine, J. Labelled Compd. Radiopharm. 27: 189 (1989).CrossRefGoogle Scholar
  44. 44.
    M. Adam, Y. Ponce, J. Berry and K. Hoy, Synthesis and Preliminary Evaluation of L-6-[123I]Iododopa as a Potential Spect Brain Imaging Agent, J. Labelled Compd. Radiopharm. 28: 155 (1990).CrossRefGoogle Scholar
  45. 45.
    B. Bauer and R. Wagner, Improved Synthesis of [150]Butanol for Clinical Use, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).Google Scholar
  46. 46.
    G. Gundlach, E. Sattler and U. Wagenbach, Preparation of Carrier-Free 11C-Amino Acids by Insertion of Hot 110-atoms into Valine and 2-Aminobutyric Acid with Retention of Optical Asymmetry, Appl. Radiat. Isop. 40: 637 (1989).CrossRefGoogle Scholar
  47. 47.
    H. Svard, S.-B. Jigerius and B. Langstrom, The Enzymatic Synthesis of L[3–11C]Serine, Appl. Radiat. Isop. 41: 587 (1990).CrossRefGoogle Scholar
  48. 48.
    K. Hamacher and J. Hanus, Synthesis of 1-[11C]-D,L-Homocysteine thiolactone: a Potential Tracer for Myocardial Ischemia using PET, J. Labelled Compd. Radiopharm. 27: 1275 (1989).CrossRefGoogle Scholar
  49. 49.
    G. Antoni and B. Langstrom, Synthesis of -Amino[4–11C]ButyricAcid(GABA), J. Labelled Compd. Radiopharm. 27: 571 (1989).CrossRefGoogle Scholar
  50. 50.
    A. Emran, Synthesis, Reactions and Applications of [11C]thiocyanate, J. Nucl. Med. 29: 1325 (1988).Google Scholar
  51. 51.
    S. Stone-Elander, P. Roland, C. Halldin, M. Hassan and R. Seitz, Synthesis of [11C]Sodium Thiocyanate for In Vivo Studies of Anion Kinetics Using Positron Emission Tomography(PET), Nucl. Med. Biol. 16: 741 (1989).Google Scholar
  52. 52.
    T. Boothe, A. Emran, R. Finn, m. Vora, and P. Kothari Use of 11C as a Tracer for Studying the Synthesis of [11C]Urea from [11C]Cyanide, Int. J. Appl. Radiat. Isop. 36: 141 (1985).CrossRefGoogle Scholar
  53. 53.
    A. Emran, T. Boothe, R. Finn, M. Vora, and P. Kothari, Use of Liquid Chromatography for the Separation and Determination of Carrier Species Associated with the Synthesis of No-Carrier-Added [11C] Labelled Compounds: Determination of the Specific Activity of [11C]Urea, J. Radioanal. Nucl. Chem. 91: 277 (1985).CrossRefGoogle Scholar
  54. 54.
    A. Emran, Synthesis of [13N] and/or [11C] Singly or Doubly Labelled Urea, in “Proceedings of the 197th ACS National Meeting”, Dallas, TX, September (1989).Google Scholar
  55. 55.
    A. Emran, T. Boothe, R. Finn, M. Vora, and P. Kothari, Use of 11C as a Tracer for Studying the Synthesis of Radiolabelled Coumpounds-II: 2[11C]-5,5-Diphenylhydantoin from [11C]Cyanide, Int. J. Appl. Radiat. Isop. 37: 1033 (1986).CrossRefGoogle Scholar
  56. 56.
    A. Emran, T. Boothe, R. Finn, M. Vora, and P. Kothari, High Specific Activity Measurements Utilizing HPLC in “Proceedings of the 187th ACS National Meeting”, Washington, D.C., August (1983).Google Scholar
  57. 57.
    A. Emran, T. Boothe, N. Shanbaky, R. Finn, M. Vora, and P. Kothari, Rapid Simultaneous Determination of Diphenylhydantoin, its Major Metabolites and Degradation Products, in “Proceedings of the 192th ACS National Meeting”, Anaheim, CA, September (1986).Google Scholar
  58. 58.
    D. R. Hwang, L. Lang, C. Mathias, D. Kadmon and M. Welch, N-3[18F]Fluoropropylputrescine as Potential PET Imaging Agent for Prostate and Prostate Derived Tumors, J. Nucl. Med. 30: 1205 (1989).PubMedGoogle Scholar
  59. 59.
    F. Oberdorfer, E. Hofmann and W. Maier-Borst, Preparation of 18F-Labeled 5-Fluorouracil of Very High Purity, J. Labelled Compd. Radiopharm. 27: 137 (1989).CrossRefGoogle Scholar
  60. 60.
    M. Vora and R. Lambrecht, Optimized Synthesis of Radioiodinated Rhodamine-123, J. Labelled Compd. Radiopharm. 27: 789 (1989).CrossRefGoogle Scholar
  61. 61.
    M. Vora, Chromatography of Rhodamine 123 and Rhodamine 110 on Reverse-Phase Liquid Chromatographic Column, J.Liq.Chromatogr. 12: 583 (1989).CrossRefGoogle Scholar
  62. 62.
    E. Knust, K. Dutschka and H.-J.Machulla, Radiopharmaceutical Preparation of 3–123I-a-methyltyrosine for Nuclear Medical Applications, J. Radioanal. Nucl. Chem. 144: 107 (1990).CrossRefGoogle Scholar
  63. 63.
    Y. Ding, G. Antoni, J. Fowler, A. Wolf and B. Langstrom, Synthesis of L[5-TT C]Ornithine, J. Labelled Compd. Radiopharm. 27: 1079 (1989).CrossRefGoogle Scholar
  64. 64.
    H. Coenen, V. Pike, G. Stoecklin and R. Wagner, Recommendation for A Practical Production of [2–18F]Fluoro-2-Deoxy-D-Glucose, Appl.Radiat. Isop. 38: 605 (1987).CrossRefGoogle Scholar
  65. 65.
    T. Tewson, Procedures, Pitfalls and Solutions in the Production of [18F]2Deoxy-2-fluoro-D-Glucose: a Paradigm in the Routine Synthesis of Fluorine-18 Radiopharmaceuticals, Nucl. Med. Biol. 16: 533 (1989).Google Scholar
  66. 66.
    K. Hamacher, H. Coenen and G. Stoecklin, Efficient Stereospecific Synthesis of No-Carrier-Added 2-[18F]Fluoro-2-Deoxy-D-Glucose Using Aminopolyether Supported Nucleophilic Substitution, J. Nucl. Med. 27: 235 (1986).PubMedGoogle Scholar
  67. 67.
    M. Vora, T. Boothe, R. Finn, P. Kothari, A. Emran, S. Carroll and A. Gilson, Multimillicurie Preparation of 2-[18F1-Fluoro-2-Deoxy-DGlucose via Nucleophilic Displacement with Fluorine-18 Labelled Fluoride, J. Labelled. Compd. Radiopharm. 22: 953 (1985).CrossRefGoogle Scholar
  68. 68.
    E. Kurst, R. Wortmann and H. Machulla, Synthesis of 2-Deoxy-2-[18F]fluoroD-glucose and 3-Deoxy-3-[18F]fluoro-D-glucose with No-Carrier-Added [18F]fluoride, J. Radioanal. Nucl. Chem. 132: 85 (1989).CrossRefGoogle Scholar
  69. 69.
    S. Yamazaki, R. Iwata and T. Ido, Computer Controlled Synthesis of 2- Deoxy-2-[18F]Fluoro-D-Glucose from [18]Fluoride with Feedback Control, in “CYRIC Annual Report 1989”, 158 (1989).Google Scholar
  70. 70.
    S. Gatley, S. Brown and C. Thompson, Rapid, Inexpensive Quality Control of Fluorine-18 2-Deoxy-2-Fluoro-D-Glucose Preparations Using the Hexokinase Reaction In Vitro, J. Nucl. Med. 29: 1443 (1988).Google Scholar
  71. 71.
    F. Oberdorfer, W. Hull, B. Travingq and W. Maier-Borst, Synthesis and Purification of 2-Deoxy-2-[1 F]fluoro-D-glucose and 2-Deoxy-2- [18F]fluoro-D-mannose: Characterization of Products by 1H- and 18F-NMR Spectroscopy, Appl. Radiat. Isop. 37: 695 (1986).CrossRefGoogle Scholar
  72. 72.
    F. Oberdorfer, K. Kemper and K. Gottschall, Application of Ion Chromatography to the Analysis of 18F-Labelled Deoxyaldohexoses. An Improved System for Monitoring the Chemical Purity of 2-Deoxy-2-[1 F]fluoro-D-glucose and 2-Deoxy-2-[18F]fluoro-D- galactose, in “Proceedings of the Eight mt. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).Google Scholar
  73. 73.
    D. Alexoff, R. Casati, J. Fowler, A. Wolf, C. Shea, D. Schlyer and C.-Y. Shiue, Ion Chromatographic Analysis of 18FDG Produced by [18F]fluoride Displacement: Production of 2-Chloro-2-Deoxy-D-Glucose as an Impurity in the Presence of Chloride Ion, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).Google Scholar
  74. 74.
    Solin, J. Bergman, M. Haaparanta and A. Reissell, Production of 18F from Water Targets. Specific Radioactivity and Anionic Contaminants, Appl. Radiat. Isop. 39: 1065 (1988).CrossRefGoogle Scholar
  75. 75.
    M. Suehiro, M. Iwamoto, I. Arai and T. Nozaki, Bromination, No-CarrierAdded Radiobromination and Simultaneously-occurring Chlorination by Chloramine T, Appl. Radiat. Isop. 41: 439 (1990).CrossRefGoogle Scholar
  76. 76.
    A. Zimmer, J. Kazikiewicz, S. Rosen and S. Spies, Chromatographic Evaluation of the Radiochemical Purity of Na131I: Effect or Monoclonal Antibody Labeling, Nucl. Med. Biol. 14: 533 (1987).Google Scholar
  77. 77.
    M. Sajjad, R. Lambrecht and S. Bakr, Chromatographic Evaluation of the Radiochemical Purity of Reductant-Free Iodine-123, Nucl. Med. Biol. 15: 721 (1988).Google Scholar
  78. 78.
    L. Mausner, S. Srivastava, S. Mirzadeh, G. Meinken and T. Prach, 123I Research and Production at Brookhaven National Laboratory, Appl. Radiat. Isop. 37: 843 (1986).CrossRefGoogle Scholar
  79. 79.
    T. Boothe, A. Emran, R. Finn, P. Kothari and M. Vora, Chromatography of Radiolabelled Anions Using Reversed-Phase Liquid Chromatographic Columns, J. Chromatoor. 333: 269 (1985).CrossRefGoogle Scholar
  80. 80.
    T. Boothe, R. Finn, M. Vora, A. Emran, P. Kothari and G. Kabalka, Radioiodinations of Organic Molecules on Silica Gel Surfaces, J. Labelled Compd. Radiopharm. 22: 1109 (1985).CrossRefGoogle Scholar
  81. 81.
    T. Boothe, P. Kothari, P. Smith, E. Tavano and D. Kinney, Evaluation of Several HPLC Column Systems for Anion and Cation Determination in Radiochemical/Radiopharmaceutical Analysis, in “Proceedings of the 198th ACS National Meeting”, Miami Beach, September (1989).Google Scholar
  82. 82.
    A. Emran, L. Bolomey, R. Tilbury and M. Drew, Continuous Flow System for the Production of 13N-Labelled Tracers to Study Nitrogen Transport and Metabolism, in “Proceedings of the 198th ACS National Meeting”, Miami Beach, FL, September (1989).Google Scholar
  83. 83.
    J. Brodack, M. Kilbourn and M. Welch, Automated Production of Several Positron-Emitting Radiopharmaceuticals Using a Single Laboratory Robot, A001. Radiat. Isop. 39: 689 (1988).CrossRefGoogle Scholar
  84. 84.
    A. Luven, M. Perlmutter, G. Bida, G. VanMoffaert, J. Cook, N. Satyamurthy, M. Phelps and J. Barrio, Remote, Semiautomated Production of 6[18F]Fluoro-L-Dopa for Human Studies with PET, Appl. Radiat. Isop. 41: 275 (1990).CrossRefGoogle Scholar
  85. 85.
    T. Ruth, M. Adam, S. Jivan, D. Morris and S. Tyldesley, An Automated Synthesis of L-6-[18F]Fluorodopa, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).Google Scholar
  86. 86.
    A. Plenevaux, R. Cantineau, D. Labar, C. Lemaire and M. Guillaume, Routine Production and Improvement in the Purification of 3-N-(2’[18F]Fluoroethyl)spiperone for Clinical Use, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990)Google Scholar
  87. 87.
    K. Hamacher, B. Nebeling, H. Coenen and G. Stoecklin, [18F]NMethylspiperone: Direct N.C.A. Nucleophilic [18F]Fluorination of NMethyl-4-nitrospiperone for Remote Controlled Routine Production of N.C.A. [18F]MSP, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).Google Scholar
  88. 88.
    M. Channing, P. Plascjak, W. Meyer, Jr., N. Simpson, Y. Sheh, R. Adams, D. Kiesewetter, B. Dunn and R. Finn, Radiochemical Automation Achieved through a Modified Autosampling Devise, Nucl. Inst. Meth. Phvs. Res. B40 /41: 1121 (1989).CrossRefGoogle Scholar
  89. 89.
    M. Senda, M. Suchiro, T. Sasaki, H. Toyama, K. Kitani, K. Miki, T. Hiroishi, H. Suzuki, T. Hiasa and Y. Miyake, Automated Quality Test of Positron Emitting Radiopharmaceuticals in a Clinical PET Center, Eur. J. Nucl. Med. 16 (Suppl): S73 (1990).Google Scholar
  90. 90.
    K. Rosenspire, W. Hirth, S. Jurisson, D. Nowotnik, W. Eckelman and A. Nunn, Direct Chromatographic Analysis of Metabolites of Lipophilic Tracers in Whole Blood by ISRP Chromatography, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).Google Scholar
  91. 91.
    O. Solin, M. Haaparanta, J. Sunderland, O. de Jesus and R. Nickles, A ß- Flow-Through Detector for HPLC Analysis of PET Metabolites, J. Nucl. Med. 31: 749 (abstract) (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Thomas E. Boothe
    • 1
  • Ali M. Emran
    • 2
  1. 1.Cyclotron FacilityMount Sinai Medical CenterMiami BeachUSA
  2. 2.Positron Diagnostic and Research CenterUniversity of Texas Health Science CenterHoustonUSA

Personalised recommendations