Synthesis of Radiopharmaceuticals Via Organoboranes

  • George W. Kabalka
  • Mark M. Goodman


Radiopharmaceuticals containing complex functional groups are playing an increasing role in diagnostic nuclear medicine due to new developments in the instrumentation used for single-photon emission computerized tomography (SPECT)1 and positron emission tomography (PET).2 These computerized systems permit noninvasive, in vivo, three-dimensional imaging of organs after administration of appropriate agents labeled with short-lived nuclides.3 The techniques are used for in vivo pharmacokinetics, organ imaging, evaluation of organ function, and physiological mapping. They complement the traditional X-ray scan and are’partially responsible for the tremendous upsurge in the use of radiopharmaceuticals in hospitals today.


Positron Emission Tomography Boronic Acid Carbonylation Reaction Arylboronic Acid Alkyl Iodide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. F. Wong and M. J. Kuhar, In vivo PET and SPECT receptor imaging: New technology and tactics for receptor measurement, Adv. Exp. Med. Biol. 236:181 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    M. E. Phelps, J. C. Maziotta, and H. R. Schelbert “Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart”, Raven Press, New York (1986).Google Scholar
  3. 3.
    P. R. Jolles, P. R. Chapman, and A. Alavi, PET, CT, and MRI in the evaluation of neuro psychiatric disorders: Current applications, J. Nucl. Med. 30: 1589 (1989).PubMedGoogle Scholar
  4. 4.
    A. Murray, and D. L. Williams, “Organic Synthesis with Isotopes”, Interscience, New York (1958).Google Scholar
  5. 5.
    J. S. Fowler, and A. P. Wolf, The Synthesis of carbon 11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical application“, in ”Nuclear Science Series“, Publication NAS-NS-3201, Springfield, VA, National Technical Information Service (1982).Google Scholar
  6. 6.
    T. J. Tewson, M. J. Welch, and A. P. Wolf, Terminology concerning specific activity of radiopharmaceuticals, J. Nucl. Med. 22: 392 (1981).Google Scholar
  7. 7.
    G. W. Kabalka, Radionuclide incorporation via organoboranes, in “Aspects of mechanism and organometallic chemistry”, J. H. Brewster, Ed., Plenum Press, New York, 1978.Google Scholar
  8. 8.
    V. F. Raaen, “Carbon-14”, McGraw-Hill, New York (1968).Google Scholar
  9. 9.
    A. Pelter, K. Smith, and H. C. Brown, “Borane Reagents”, Academic Press, New York (1988).Google Scholar
  10. 10.
    G. W. Kabalka, Synthesis of Isotopically Labeled Compounds Via Boranes, in “Boron Chemistry”, S. Hermanek, Ed., World Scientific, New Jersey, (1987).Google Scholar
  11. 11.
    G. W. Kabalka, Incorporation of stable and radioactive isotopes via organoborane chemistry, Acc. Chem. Res. 17: 215 (1984).CrossRefGoogle Scholar
  12. 12.
    N. H. Nam, A. J. Russo, and R. F. Nystrom, Preparation of labelled olefins by tritioboration procedures, Chem. Ind. London 1876 (1963).Google Scholar
  13. 13.
    H. C. Brown “Organic Synthesis Via Boranes”, Wiley Interscience, New York (1975).Google Scholar
  14. 14.
    N. D. Heindel, H. D. Burns, T. Honda, and L. W. Brady, “The Chemistry of Radiopharmaceuticals”, Masson, New York (1978).Google Scholar
  15. 15.
    W. G. Myers, Radioiodine, in “Radioactive Pharmaceuticals”, USAEC Symp. Conf. 651111, Springfield VA, National Bureau of Standards, Washington, D. C., 217 (1966).Google Scholar
  16. 16.
    T. C. Hill, B. L. Holman, R. Lovett, D. H. O’Leary, D. Front, P. Magistretti, R. E. Zimmerman, S. Moore, M. E. Clouse, J. L. Wu, T. H. Lin, and R. M. Baldwin, Initial experience with spect of the brain using n-isopropyl I-123 p-iodoamphetamine: Concise communication, J.Nucl. Med. 23: 191, (1982).PubMedGoogle Scholar
  17. 17.
    A. Hock, C. Freundlib, K. Vyska, B. Losse, R. Erbel, and L. E. Feinendegen Myocardial Imaging and Metabolic Studies with [17-f23I]iodoheptadecanoic acid in patients with idiopathic congestive cardiomyopathy, J. Nucl. Med. 24: 22 (1983).PubMedGoogle Scholar
  18. 18.
    M. Nakajo, B. Shapiro J. Copp, V. Kalffe, M. D. Gross, J. C. Sisson, and W. H. Beierwaltes, The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]-123 iodobenzylguanidine (I-131 M1BG) in man, J. Nucl. Med. 24: 672 (1983).PubMedGoogle Scholar
  19. 19.
    G. W. Kabalka and E. E. Gooch, A mild convenient procedure for the conversion of alkenes into alkyl iodides via the reaction of iodine monochloride with organo-boranes, J. Org. Chem. 45: 3578 (1980).CrossRefGoogle Scholar
  20. 20.
    G. W. Kabalka and E. E. Gooch, A new method for radioiodinating organic compounds via organoborane chemistry, J. Chem. Soc.,Chem. Commun. 1011 (1981).Google Scholar
  21. 21.
    G. W. Kabalka, K. A. R. Sastry, and K. Muralidhar, Synthesis of iodine-125 labelled aryl and vinyl iodides, J. Labelled Compds. Radiopharm. 19: 795 (1982).CrossRefGoogle Scholar
  22. 22.
    G. W. Kabalka, E. E. Gooch, and K. A. R. Sastry, Rapid and mild synthesis of radiodine labeled radiopharmaceuticals, J. Nucl. Med. 22: 908 (1981).PubMedGoogle Scholar
  23. 23.
    G. W. Kabalka, “Radiohalogenation Method”, U. S. Patent No. 4,450, 149 (1984).Google Scholar
  24. 24.
    G. W. Kabalka and R. S. Varma, The synthesis of radiolabeled compounds via organometallic intermediates, Tetrahedron. 45: 6601 (1989).CrossRefGoogle Scholar
  25. 25.
    P. C. Srivastava and F. F. Knapp, [(E)-1-[123I]Iodo-lpenten-5-yl] triphenylphosphonium iodide: Convenient preparation of a potentially useful myocardial perfusion agent, J. Med. Chem. 27: 978 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    M. M. Goodman, R. N. Waterhouse, G. W. Kabalka, and F. F. Knapp, Jr., Synthesis and biological evaluation of 3-C((E)-2 [125I)Iodoethenyl)-D-Allose: A new strategy for the preparation of in vivo stable radioiodinated carbohydrates, NucComp. 22: 62 (1990).Google Scholar
  27. 27.
    G. W. Kabalka, U. Sastry, K. A. R. Sastry, F. F. Knapp, and P. C. Srivastava, Synthesis of arylboronic acids via the reaction of borane complexes with arylmagnesium halides, J. Organomet. Chem. 259: 269 (1983).CrossRefGoogle Scholar
  28. 28.
    R. S. Varma and G. W. Kabalka, Synthesis and selected reactions of conjugated nitroalkenes, Org. Prep. Proced. Int. 19: 283 (1987).CrossRefGoogle Scholar
  29. 29.
    Srivastava, F. F. Knapp, Jr., A. P. Callahan, B. A. Owen, G. W. Kabalka, and K. A. Sastry, Myocardial imaging agents: Synthesis, characterization and evaluation of cis-(Z) and trans-(E)-18-bromo[82Br]5-tellura-l7-octadecenoic acid, J. Med. Chem. 28: 408 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    S. A. Kunda, M. D. Smith, and G. W. Kabalka, Chlorination of organoboranes: Synthesis of (Z)-vinyl chlorides, Tetrahedron Lett. 26: 279 (1985).CrossRefGoogle Scholar
  31. 31.
    D. S. Wilbur, M. D. Hylarides, and A. R. Fritzberg, Reactions of organometallic compounds with astatine-211. Application to protein labeling, Radiochem. Acta. 47: 137 (1989).Google Scholar
  32. 32.
    H. C. Brown, M. M. Midland, and G. W. Kabalka, Organoboranes for synthesis. 5 Stoichiometrically controlled reaction of organoboranes with oxygen under mild conditions to achieve quantitative conversion to alcohols, Tetrahedron Lett. 42: 5523 (1980).Google Scholar
  33. 33.
    G. W. Kabalka, R. S. A. Kunda, Synthesis of organoborane 36: 853 (1985)Google Scholar
  34. M. Lambrecht, M. Sajjad, J. S. Fowler, G. W. McCollum, and R. MacGregor, 150-labeled butanol via chemistry, Int. J. Appl. Radiat. Isot.Google Scholar
  35. 34.
    M. S. Berridge, E. H. Cassidy, and A. H. Terris. A routine, automated synthesis of oxygen-15-labeled butanol for positron tomography, J. Nucl. Med. 31: 1727 (1990).PubMedGoogle Scholar
  36. 35.
    P. J. Kothari, R. D. Finn, G. W. Kabalka, M. M. Vora, T. E. Boothe, and A. M. Emran, Synthesis of nitrogen-13 labeled alkylamines via amination of organoboranes, Int. J. Rad. Appl. Instrum. [A] 37: 469 (1986).CrossRefGoogle Scholar
  37. 36.
    H. C. Brown, Organoborane-carbon monoxide reactions: Synthesis of carbon structures, Acc. Chem. Res. 2: 65 (1969).CrossRefGoogle Scholar
  38. 37.
    G. W. Kabalka, E. E. Gooch, C. J. Collins, and V. F. Raaen, A new method for isotopic labeling of organic compounds involving organoboranes, J. Chem. Soc., Chem. Commun. 607 (1979).Google Scholar
  39. 38.
    D. Y. Tang, A. Lipman, G.-J. Meyer, C.-N. Wan, and A. P. Wolf, Carbon-11 labeled octanal and benzaldehyde, J. Labelled Compd. Radiopharm. 16: 435 (1979).CrossRefGoogle Scholar
  40. 39.
    P. J. Kothari, R. D. Finn, M. M. Vora, T. E. Boothe, and A. M. Emran, 1–11C-Butanol: Synthesis and Development as a Radiopharmaceutical for Blood Flow Measurements, Int. J. Appl. Radiat. Isot. 36: 412 (1985).PubMedCrossRefGoogle Scholar
  41. 40.
    P. J. Kothari, R. D. Finn, G. W. Kabalka, T. E. Boothe, A. Emran, and M. Mohammadi, Carbon-11 labeled dialkylketones: Synthesis of 9-[11C]-heptadecan-9-one, Int. J. Rad. Appl. Istrum. JA] 37: 471 (1986).CrossRefGoogle Scholar
  42. 41.
    G. W. Kabalka, Incorporation of carbon-13 and carbon-14 via organoborane technology Synth. Commun. 10: 93 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • George W. Kabalka
    • 1
    • 2
  • Mark M. Goodman
    • 2
  1. 1.Department of ChemistryThe University of TennesseeKnoxvilleUSA
  2. 2.Department of RadiologyThe University of TennesseeKnoxvilleUSA

Personalised recommendations