Application of Organosilicon Chemistry to the Synthesis of Gamma and Positron Emitting Radiotracers for Use in Nuclear Imaging Studies

  • H. D. Burns
  • W.-s. Eng
  • N. J. Brenner
  • B. E. Francis


Radiohalogenated compounds have been used in biomedical research and diagnostic nuclear medicine for many years. In the past ten years, interest in the development and use of radiohalogenated compounds has increased significantly, particularly for 123I,75Br, and 18F labeled compounds for imaging; 125I labeled compounds for autoradiography; as well as 131I, 125I, and 80mBr for radiotherapeutic applications. The radiohalogenation of compounds for these applications poses special synthetic constraints. In many cases, the radiohalogen must be incorporated at a specific position in the molecule in order to retain biological activity, and at a position which is metabolically stable towards dehalogenation. For radioiodinated and radiobrominated compounds, this often dictates that the radiotracer be an aryl-or vinylradiohalide. It is also important that these radiolabeled compounds be prepared in short reaction times, in high radiochemical yields, and at high specific activity. While high specific activity is generally desirable to reduce unwanted pharmacological or physiological side effects, high specific activity (on the order of 1,000 Ci/mmol) is required for receptor studies to prevent saturation of the receptor by carrier.


High Specific Activity Radiochemical Yield Hippuric Acid Positron Emission Tomographic Quaternary Ammonium Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seevers, R.H.; Counsel, R.E.; Chem. Rev. 1982, 82, 575.CrossRefGoogle Scholar
  2. 2.
    Kabalka, G W; Vanna, R.S.: Tetrahedron 1989, 45 (21), 6601.CrossRefGoogle Scholar
  3. 3.
    Lever, J.R.; Datum’s, R.F.; Wilson, A.A.; Raven, H.T.; Wagner, Jr., H.N.: Tetrahedron Lett. 1987, 28, 4015.CrossRefGoogle Scholar
  4. 4.
    Ku, H.; Barrio, J.R.: J. Org. Chem. 1981, 46 (25), 5239.CrossRefGoogle Scholar
  5. 5.
    Chan, T.H.; Fleming, I.: Synthesis 1979, 761.Google Scholar
  6. 6.
    Habich, D.; Effenberger F.: Synthesis 1979, 841.Google Scholar
  7. 7.
    Negishi, E.: Organometallics in Organic Synthesis; John Wiley and Sons: New York, 1980; Vol. 1, p. 403.Google Scholar
  8. 8.
    Earbom, C; Pande, K.C.: J. Chem. Soc. 1960, 1566.Google Scholar
  9. 9.
    Pray, B.O.; Sommer, L.H.; Goldberg, G.M.; Ken, G.T.; DiGiorgio, P.A.; Whitmore, F.C.: J. Am. Chem. Soc. 1948, 70, 433.CrossRefGoogle Scholar
  10. 10.
    Felix, G; Dunogues, J.; Pisciotti, F.; Calas R.: Angew. Chem. Int. Ed. Engl. 1977, 16, 488.CrossRefGoogle Scholar
  11. 11.
    Felix, G.; Dunogues, J.; Calas, R.: Angew. Chem. Int. Ed. Engl. 1979, 18, 402.CrossRefGoogle Scholar
  12. 12.
    Wilbur, D.S.; Anderson, K.W.; Stone, W.E.; O’Brien, Jr., H.A.l J. Label. Comp. and Radiopharm. 1982, XIX (10), 1171.CrossRefGoogle Scholar
  13. 13.
    Wilbur, D.S.; Stone, W.E.; Anderson, K.W.L J. Org. Chem. 1983, 48, 1542.CrossRefGoogle Scholar
  14. 14.
    Wilson, S.R.; Jacob, L.A.L J. Org. Chem. 1986, 51 (25), 4833.CrossRefGoogle Scholar
  15. 15.
    Moerlein, S.M.; Coenen, H.H.: J. Chem. Soc., Perkin Trans. 1 1985, 1941.CrossRefGoogle Scholar
  16. 16.
    Moerlein, S.M.; Beyer, W.; Stocklin, G. J.: Chem. Soc., Perkin Trans. 1 1988, 779.CrossRefGoogle Scholar
  17. 17.
    Moerlein, S.M.: J. Chem. Soc., Perkin Trans. 1 1985, 1687.CrossRefGoogle Scholar
  18. 18.
    Wilbur, D.S.; Svitra, Z.V.: J. Label. Comp. and Radiopharm. 1983, XX (5), 619.CrossRefGoogle Scholar
  19. 19.
    Wilson, A.A.; Dannals, R.F.; Ravert, H.T.; Bums, H.D.; Wagner, Jr., H.N.; J. Label. Comp. and Radiopharm. 1985, XXIII (1), 83.Google Scholar
  20. 20.
    Wilson, A.A.; Dannals, R.F.; Ravert, H.T.; Frost, J.J.; Wagner, Jr., H.N.: J. Med. Chem. 1989, 32, 1057.PubMedCrossRefGoogle Scholar
  21. 21.
    Bums, H.D.; Eng, W.-s.; Gibson, R.E.; Ransom, R.W.; Thorpe, H.; Fioravanti, C.; Magill, C.A.; Solomon, H.F.: J. Nucl. Med. 1989, 30 (5), 923.Google Scholar
  22. 22.
    Ransom, R.W.; Eng, W.-s.; Bums, H.D.; Gibson, R.E.; Solomon, H.F.: Life Sci. 1990, 46, 1103.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson, A.A.; Scheffel, U.; Stathis, M.; Dannals, R.F.; Ravers, H.T.; Wagner, Jr., H.N.: J. Nucl. Med. 1990, 31 (5), 797.Google Scholar
  24. 24.
    Ohmomo, Y.; Okuyama, S.; Magata, Y.; Ueno, Y.; Tanaka, C.; Yokoyama, A.: Chem. Pharm. Bull. 1989, 37 (9), 2276.Google Scholar
  25. 25.
    Wilbur, D.S.; Svitra, Z.V.: J. Label. Comp. and Radiopharm. 1984, XXI (5), 415.CrossRefGoogle Scholar
  26. 26.
    Kilbourn, M.R.: Fluorine-18 Labeling of Radiopharmaceuticals National Academy Press: Washington DC, 1990; p 32.Google Scholar
  27. 27.
    Adam, M.J.; Berry, J.M.; Hall, L.D.; Pate, B.D.; Ruth, T.J.: Can. J. Chem. 1983, 61, 658.CrossRefGoogle Scholar
  28. 28.
    DiRaddo, P.; Diksic, M.; Jolly, D.: J. Chem. Soc., Chem. Commun. 1984, 159.Google Scholar
  29. 29.
    Speranza, M.; Shiue, C.; Wolf, A.P.; Wilbur, D.S.; Angelini, G.: J. Chem. Soc.., Chem. Commun. 1984, 1448.Google Scholar
  30. 30.
    Speranza, M.; Shiue, C.-Y.; Wolf, A.P.; Wilbur, D.S.; Angelini, G.: J. Fluorine Chem. 1985, 30, 97.CrossRefGoogle Scholar
  31. 31.
    Coenen, H.H.; Moerlein, S.M.: J. Fluorine Chem. 1987, 36, 63.CrossRefGoogle Scholar
  32. 32.
    Diksic, M.; Farrokhzad, S.: J. Nucl. Med. 1985, 26, 1314.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. D. Burns
    • 1
  • W.-s. Eng
    • 1
  • N. J. Brenner
    • 1
  • B. E. Francis
    • 1
  1. 1.Merck Sharp & Dohme Research LaboratoriesWest PointUSA

Personalised recommendations