Status of Lead and Bismuth for Radioimmunoimaging and Radioimmunotherapy

  • Otto A. Gansow


Tumor-targeted monoclonal antibodies (mAb) might be useful as diagnostic or therapeutic agents when linked to cytotoxic or imaging reagents. Our group is working to test this hypothesis by linking cytocidal and image-producing isotopes to mAb and testing the utility of the radioimmunoconjugates formed in animal model systems.1–7 Radioiodines were first employed for these purposes,8,9 but unfavorable nuclear properties (half-lives, γ-ray and β-particle energies) and chemical reactivity (deiodination in vivo) limit their utility.10–11 Labeling immunoproteins with metallic radionuclides offers more versatility in that the selection of potentially useful radiometals spans the periodic table.12 Of the metallic radionuclides with physical properties most suited for use with mAb in nuclear medicine, few are more available or desirable than those of bismuth13 (212Bi) and lead14 (203Pb, 212Pb), as listed in Table 1. 212Bi or 212Pb could serve as sources for highly cytocidal α-particles; the 279 KeV γ-emission of 2O3Pb is useful for single photon emission computed tomography (SPECT) imaging; and 2O6Bi may be used as a γ-ray emitting radiotracer for 212Bi. That no clinical studies have yet been possible is due entirely to the lack of chelate complexes of lead and bismuth that are stable in vivo. In contrast, extensive use is being made of 111In for radioimmunoimaging and 90Y for radioimmunotherapy despite their less than optimal decay characteristics.l5–18


Single Photon Emission Compute Tomography Leukemic Mouse Label Monoclonal Antibody Thermodynamic Stability Constant Bifunctional Chelate Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scheinberg, D.A.; Strand, M.; Gansow, O. Targeting in erythroleukemic mice: Radioiodinated and chelated radiometal-conjugated monoclonal antibody, in Proceedings of the J.J. Abel Symposium, on Drug Development, June 8–10, 1981. Monoclonal Antibodies in Drug Development, Bethesda, MD: August, J.T., editor. American Society for Pharmacology and Experimental Therapeutics, 1982, 159.Google Scholar
  2. 2.
    Scheinberg, D.A., Strand, M., and Gansow, O.A. Tumor imagining with radioactive metal chelates conjugated to monoclonal antibodies, Science, 215: 1511 (1982).Google Scholar
  3. 3.
    Kozak, R.W., Atcher, R.W., Gansow, O.A., Friedman, A.M., Hines, J.J., Waldmann, T.: Bismuth 212 labeled anti-Tac monoclonal antibody: Alpha particle emitting radionuclides as modalities for radioimmunotherapy, Proc. Nat. Acad. Sci. 83: 474 (1986).Google Scholar
  4. 4.
    Brechbiel, M.W., Gansow, O.A., Atcher, R.W., Schlom, J., Esteban, J., Simpson, D., and Colcher, D. Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor imaging studies, Inorg. Chem. 25: 2772 (1986).Google Scholar
  5. 5.
    Esteban, J., Schlom, J., Gansow, O.A., Atcher, R.W., Brechbiel, M., Simpson, D., Colcher, D.: Biodistribution and imaging of athymic mice bearing human colon carcinoma xenografts, J. Nucl. Med. 28: 861 (1987).Google Scholar
  6. 6.
    Kozak, R.W., Raubitschek, A., Mirzadeh, S., Brechbiel, M.W., Junghans,R., Gansow, O.A., Waldmann, T.A.: Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-90 monoclonal antibodies; critical factors in determining in vivo survival and organ toxicity, Cancer Res. 49: 2639 (1989).Google Scholar
  7. 7.
    Rosellí, M.; Schlom, J.; Gansow, O.A.; Raubitschek, A.; Mirzadeh, S.; Brechbiel, M.W.; Colcher, D. Comparative biodistributions of yttrium-and indium-labeled monoclonal antibody B72.3 in athymic mice bearing human colon carcinoma xenografts, J. Nucl. Med. 30: 672 (1989).Google Scholar
  8. 8.
    Ballou, B; Levine, G.; Hakala, T.; Tumor location with radiolabeled monoclonal antibody using external scintigraphy, Science 206: 844 (1979).Google Scholar
  9. 9.
    Mach, J.P.; Forni, M.; Ritschard, J.; Use of radiolabeled monoclonal anti-CEA antibodies for the detection of human carcinomas by external photo-scanning and tomoscintigraphy, Immunol. Today 2: 239 (1981).Google Scholar
  10. 10.
    Spencer, R.P. in “Therapy in Nuclear Medicine”, Chapters 1–3, Grune and Stratton, New York (1978).Google Scholar
  11. 11.
    Goldenberg, D. “Cancer Imaging with Radiolabeled Antibodies,” Kluwer Academic Publishers, Boston (1990).Google Scholar
  12. 12.
    Kozak, R.W.; Waldmann, T.; Atcher, R.W.; Gansow, O.A. Radionuclide conjugated monoclonal antibodies: A synthesis of immunology, inorganic chemistry, and nuclear science, Trends in Biotechnology 4: 259 (1985).Google Scholar
  13. 13.
    Gansow, O.A.; Atcher, R.W.; Link, D.C.; Friedman, A.M.; Seevers, R.H.; Anderson, W.; Scheinberg, D.A.; and Strand, M. Generator produced Bi-212 chelated to chemically modified monoclonal antibody for use in radiotherapy, Amer. Chem. Soc. Sympos. Series 241: 215 (1984).Google Scholar
  14. 14.
    Kumar, K., Magerstadt, M., and Gansow, O.A., Lead(II) and Bismuth(III) Complexes of the Polyazacycloalkane-N-acetic Acids nota, dota and teta, J.C.S. Chem. Commun. 145(1989).Google Scholar
  15. 15.
    Halpern, S.E., Dilman, R.O., Witztum, K.F., Shega, J.F., Hagan, W.M., Burrows, W.M., Dillman, J.B., Clutter, M.L., Sobol, J.M., Frinke, J.M., Bartholomew, R.B., David, G.S., and DeCarlo, D.J. Radiloimmunodetection of melanoma utilizing In-11196.5 monoclonal antibody: A preliminary report, Radiology, 155: 493 (1985).Google Scholar
  16. 16.
    Murray, J.L., Rosenblum, M.G., Sobol, R.E., Plager, C.E., Haynie, T.P., Jahns, M.F., Glenn, H.J., Lamki, L., Benjamin, R.S., Papadopoulous, N., Boddie, A.W., Frinke, J.M., David, G.S. and Hersh, E.M. Radioimmunoimaging in malignant melanoma with In-111 labeled monoclonal antibody 96.5, Cancer Res. 45: 2376 (1985).Google Scholar
  17. 17.
    Rainsbury, R.M. Localization of human breast carcinoma by radiolabeled monoclonal antibody, Br. J. Surg. 71: 805 (1984).Google Scholar
  18. 18.
    Order, S.E., Klein, J.L., Leichner, P.K., Frinke, J., Lollo, C., DeCarlo, D.J. Yttrium-90 antiferritin. A new therapeutic radiolabeled antibody. Int. J. Radiat. Oncol. Biol. Phys. 12: 277 (1986).Google Scholar
  19. 19.
    Lederer, C. M., and Shirley, V. S., Editors, “Table of Isotopes, 7th Ed.,” John Wiley & Sons Inc., NY (1978).Google Scholar
  20. 20.
    Hall, E.J., “Radiobiology for the Radiologist,” Harper and Row, New York (1978), Chapter 6.Google Scholar
  21. 21.
    Anderson-Berg, W.T., Squire, R.A., and Strand, M., “Specific Radioimmunotherapy Using 9°Y-Labeled Monoclonal Antibody in Erythroleukemic Mice”, Cancer Res., 47: 1905 (1987).Google Scholar
  22. 22.
    Fritzberg, A.R., ed. “Radiopharmaceuticals: Progress and Clinical Perspectives,” CRC Press, Boca Raton, FL (1986).Google Scholar
  23. 23.
    Lagunas-Solar, M.C., Little, F.E., Jungerman, J.A., Thallium-201 yields and excitation functions for the lead radioactivities produced by irradiation of Thallium-205 with 34–60 MeV protons, Int. J. Appl. Radiat. Isot. 32: 817 (1981).Google Scholar
  24. 24.
    Lagunas-Solar, M.C., Carvacho, O.F., Nagahara, L., Mishra, A., and Parks, N.J.. Cyclotron Production of No-Carrier-Added Bi-206 and Bi-205 as Tracers for Biological Studies and for the Development of Alpha-Emitting Radiotherapeutic Agents, Int. J. Radiat. Appl. Instrum., Part A, 38: 129 (1987).Google Scholar
  25. 25.
    Zucchini, G.L.; Friedman, A.M. Isotopic generator for “’Pb and 212Bi, Int. J. Nucl. Med. Biol. 9: 83 (1982).Google Scholar
  26. 26.
    Atcher, R.W., Friedman, A.M., and Hines, J.J., An Improved Generator for the Production of 212Pb and 212Bi from 224Ra, Int. J. Radiat. Appl. Instrum. Part A 39: 283 (1988).Google Scholar
  27. 27.
    Martell, A.E.; Smith, R.M. “Critical Stability Constants,” Vol. 1, New York, Plenum (1974).Google Scholar
  28. 28.
    Basolo, F., and Pearson, R.G., “Mechanisms of Inorganic Reactions,” John Wiley and Sons, New York (1967).Google Scholar
  29. 29.
    Krejcarek, G.E.; Tucker, K.L. Covalent attachment of chelating groups to macromolecules, Biochem. Biophys. Res. Commun., 77: 581 (1977).Google Scholar
  30. 30.
    Hnatowich, D.J.; Layne, W.W.; Childs, R.L. The preparation and labeling of DTPA-coupled albumin. Int. J. Appl. Radiat. Isot. 33: 327 (1982).Google Scholar
  31. 31.
    Strand, M., Scheinberg, D.A., Gansow, O.A., and Friedman, A.M., Monoclonal Antibody Conjugates for Diagnostic Imaging and Therapy, in: “Monoclonal Antibodies and Cancer”, Academic Press, New York (1984).Google Scholar
  32. 32.
    Kozak, R.W., Fitzgerald, D.P., Atcher, R.W., Goldman, C.K., Nelson, D.L., Gansow, O.A., Pastan, I., and Waldmann, T.A., Selective Elimination in vitro of Alloresponsive T cells to Human Transplantation Antigens by Toxin or Radionuclide Conjugated Anti-IL2 Receptor (Tac) Monoclonal Antibody, J. Immunol. 144: 3417 (1990).Google Scholar
  33. 33.
    Langmuir, V.K., Atcher, R.W., Hines, J.J., and Brechbiel, M.W., Iodine-125-NLRU-10 Kinetic Studies and Bismuth 212-NLRU-10 Toxicity in LS174T Multicell Spheroids, J. Nucl. Med. 31: 1527 (1990).Google Scholar
  34. 34.
    Black, C.D.V., Atcher, R.W., Barbet, J., Brechbiel, M.W., Holton, O., Hines, J.J., Gansow, O.A., and Weinstein, J.N., Selective ablation of B lymphocytes in vivo by an alpha emitter, ‘Bismuth, chelated to a monoclonal antibody, Antibody, Immunocon. and Radiopharm. 1: 47 (1988).Google Scholar
  35. 35.
    Macklis, R.M.; Kinsey, B.M.; Kassis, A.I.; Fewara, J.L.M.; Atcher, R.W.; Hines, J.J.; Coleman, C.N.; Adelstein, S.J.; and Burakoff, S.J. Radioimmunotherapy with alpha particle immunoconjugate. Science 240: 1024 (1988).Google Scholar
  36. 36.
    Greenwood, N.N., and Earnshaw, A., “Chemistry of the Elements,” Pergamon Press, New York (1984).Google Scholar
  37. 37.
    Cotton, F.A., and Wilkinson, G., “Advanced Inorganic Chemistry,” John Wiley and Sons, New York (1980).Google Scholar
  38. 38.
    In earlier work,6.42 the 1B4M-DTPA compound was thought to be a mixture of isomers and was referred to as the “MX-DTPA” compounds. Work submitted for publication.Google Scholar
  39. 39.
    Stetter, H.; Frank, W., Complex formation with tetraazacycloalkane-N,N’, N “,N ” ’-tetraacetic acids as a function of ring size, Angew. Chem. Int. Ed. 15: 686 (1976).Google Scholar
  40. 40.
    Mirzadeh, S., Kumar, K., and Gansow, O.A., The Chemical Fate of 212Bi Formed by ß-Decay of Aqueous 212Pb(DOTA)2-, submitted for publication.Google Scholar
  41. 41.
    Gansow, O.A.; Kumar, K., Process for Synthesizing Macrocyclic Chelates. U.S. Patent 4,923,985, May 8, 1990, Available from National Technical Information Service, U.S. Dept. of Commerce, Washington, DC.Google Scholar
  42. 42.
    Ruegg, C.L., Anderson-Berg, W.T., Brechbiel, M.W., Mirzadeh, S., Gansow, O.A., and Strand, M., Improved in Vivo Stability and Tumor Targeting of Bismuth-labeled Antibody, Cancer Res. 50: 4221 (1990).Google Scholar
  43. 43.
    Margerum, D.W., Cayley, G.R., Weatherburn, D.C., and Pagenkopf, G.K., Kinetics and mechanism of complex formation reactions, in “Coordination Chemistry, v.2,” American Chemical Society Monographs 174: 1 (1978).Google Scholar
  44. 44.
    Pippin, C.G., Lambrecht, R., Mirzadeh, S., and Gansow, O.A., Manuscript in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Otto A. Gansow
    • 1
  1. 1.Chemistry Section, Radiation Oncology Branch National Cancer InstituteNIHBethesdaUSA

Personalised recommendations