Gallium and Copper Radiopharmaceutical Chemistry

  • Mark A. Green


Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared3 and can be consulted for a more in-depth treatment of this topic.


Positron Emission Tomography Myocardial Perfusion Copper Isotope Myocardial Fatty Acid Metabolism Bifunctional Chelate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Browne and R. B. Firestone, “Table of Radioactive Isotopes,” Wiley, New York (1986).Google Scholar
  2. 2.
    C. J. Mathias, M.J. Welch, M.E. Raichle, M.A. Mintun, L. L. Lich, A. H. McGuire, K. R. Zinn, E. John, and M. A. Green, Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: single-pass cerebral extraction measurements and imaging with radiolabeled Cu(PTSM), J. Nucl. Med., 31: 351 (1990).PubMedGoogle Scholar
  3. 3.
    M. A. Green and M. J. Welch, Gallium radiopharmaceutical chemistry, Nucl. Med. Biol., 16: 435 (1989).Google Scholar
  4. 4.
    W. R. Harris and V. L. Pecoraso, Thermodynamic binding constants for gallium transferrin, Biochemistry, 22: 292 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    H. M. Chilton, S. W. Burchiel, and N.E. Watson, Radiopharmaceuticals for imaging tumors and inflammatory processes, gallium, antibodies, and leukocytes, in “Pharmaceuticals in Medical Imaging,” D.P. Swanson, H. M. Chilton, and J. H. Thrall, eds., MacMillan, New York (1990).Google Scholar
  6. 6.
    H. E. Howard-Lock and C. J. L. Lock, Uses in therapy, in “Comprehensive Coordination Chemistry, Vol. 6,” G. Wilkinson, R. D. Gillard, and J. A. McCleverty, eds, Pergamon, Oxford (1987).Google Scholar
  7. 7.
    C. A. Owen, “Wilson’s Disease,” Noyes, Park Ridge, NJ (1981).Google Scholar
  8. 8.
    R. Bases, S. S. Brodie, and S. Rubenfeld, Attempts at tumor localization using 64Cu-labeled copper porphyrins, Cancer, 11: 259 (1963).CrossRefGoogle Scholar
  9. 9.
    C. Raynaud, D. Comar, M. Dutheil, P. Blanchon, O. Monod, R. Parrot, and M. Rymer, Lung cancer diagnosis with 67Cu: preliminary results, J. Nucl. Med., 14: 947 (1973).PubMedGoogle Scholar
  10. 10.
    D. A. Cole, J. A. Mercer-Smith, S. A. Schreyer, J. K. Norman, and D. K. Lavallee, The biological characteristics of a water soluble porphyrin in rat lymph nodes Nucl. Med. Biol., 17: 457 (1990).Google Scholar
  11. 11.
    M. R. Zalutsky, ed., “Antibodies in Radiodiagnosis and Therapy”, CRC Press, Boca Raton, FL (1989).Google Scholar
  12. 12.
    M. J. McCall, H. Diril, and C. F. Meares, Simplified method for conjugating macrocyclic bifunctional chelating agents to antibodies via 2iminothiolane, Bioconjugate Chem., 1: 222 (1990).CrossRefGoogle Scholar
  13. 13.
    J. C. Roberts, S. L. Newmyer, J. A. Mercer-Smith, S. A. Schreyer, and D. K. Lavallee, Labeling antibodies with copper radionuclides using N-4nitrobenzyl-5-(4-carboxyphenyl)-10,13,20-tris(4-sulfophenyl) porphine, Appl. Radiat. Isot., 40: 775 (1989).CrossRefGoogle Scholar
  14. 14.
    M. M. Ter-Pogossian, M. E. Raichle, and B. E. Sobel, Positron emission tomography, Scientific American, 243: 170, (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    C. Loc’h, B. Maziere, and D. Comar, A new generator for ionic gallium-68, J. Nucl. Med., 21: 171 (1980).PubMedGoogle Scholar
  16. 16.
    D. R. Vera, K. A. Krohn, R. C. Stadalnik, and M. M. Graham, [Ga-68]deferoxamine-galactosyl-neoglycoalbumin ([Ga]Df-NGA): a positron agent for regional measurement of hepatic receptor concentration, J. Nucl. Med., 29: 933 (1988).Google Scholar
  17. 17.
    M. A. Green, M. J. Welch, C. J. Mathias, K. A. A. Fox, R. M. Knabb, and J. C. Huffman, Ga-68 1,1,1-tris(5-methoxysalicylaldiminomethyl)ethane: a potential tracer for evaluation of regional myocardial blood flow by positron emission tomography, J. Nucl. Med., 26: 170 (1985).PubMedGoogle Scholar
  18. 18.
    M. A. Green, Synthesis and biodistribution of a series of lipophilic gallium-67 tris(salicylaldimine) complexes, J. Labelled Compd. Radiopharm., 23: 1227 (1986).Google Scholar
  19. 19.
    H. F. Kung, B. L. Liu, D. Mankoff, M. P. Kung, J. J. Billings, L. Francesconi, and A. Alavi, A new myocardial imaging agent: synthesis, characterization, and biodistribution of [68Ga]BAT-TECH, J. Nucl. Med.,in press.Google Scholar
  20. 20.
    J. Zweit, H. Sharma, and S. Downey, Production of gallium-66, a short-lived positron emitting radionuclide, Appl. Radiat. Isot., 38: 499 (1987).CrossRefGoogle Scholar
  21. 21.
    P. Goethals, M. Coene, G. Slegers, D. Vogelaers, J. Everaert, I. Lemahieu, F. Colardyn, and G. R. Heyndrickx, Production of carrier-free 66Ga and labeling of antimyosin antibody for positron imaging of acute myocardial infarction, Eur. J. Nucl. Med., 16: 237 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    G. D. Robinson, F. W. Zielinski, and A. W. Lee, The zinc-62/copper-62 generator: a convenient source of copper-62 radiopharmaceuticals, Int. J. Appl. Radiat. Isot., 31: 111 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    M. A. Green, C. J. Mathias, M. J. Welch, F. Fernandez-Rubio, J. S. Perlmutter, M. E. Raichle, and S. R. Bergmann, [Cu-62]-Labeled pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II): synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion, J. Nucl. Med.,in press.Google Scholar
  24. 24.
    J. D. Carr, R. A. Libby, and D. W. Margerum, Multidentate ligand kinetics, XI; Polyamine reactions with copper complexes of ethylenediaminetetracetate and cyclohexanediaminetetraacetate ions, Inorg. Chem., 6: 1083 (1967).CrossRefGoogle Scholar
  25. 25.
    E. K. John and M. A. Green, “Structure-activity relationships for metal-labeled blood flow tracers: comparison of ketoaldehyde bis(thiosemicarbazonato)copper(II) derivatives, J. Med. Chem., 33: 1764 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    M. E. Shelton, M. A. Green, C. J. Mathias, M. J. Welch, and S. R. Bergmann, Kinetics of copper-PTSM in isolated hearts: a novel tracer for measuring blood flow with positron emission tomography, J. Nucl. Med., 30: 1843 (1989).PubMedGoogle Scholar
  27. 27.
    D. H. Petering, Carcinostatic copper complexes, in “Metal Ions in Biological Systems,” H. Sigel, ed; Marcel Dekker, New York (1980).Google Scholar
  28. 28.
    A. J. Barnhart, W. D. Voorhees, and M. A. Green, Correlation of Cu(PTSM) localization with regional blood flow in the heart and kidney, Nucl. Med. Biol., 16: 747 (1989).Google Scholar
  29. 29.
    M. E. Shelton, M. A. Green, C. J. Mathias, M. J. Welch, and S. R. Bergmann, Assessment of regional myocardial and renal blood flow using copperPTSM and positron emission tomography, Circulation,in press.Google Scholar
  30. 30.
    J. W. Babich, S. R. Cherry, P. Carnochan, J. McGuire, and H. Sharma, An evaluation of Cu-64 pyruvaldehyde bis(methylthiosemicarbazone) (PTSM) for the measurement of tissue perfusion, J. Nucl. Med., 30: 1756 (1989).Google Scholar
  31. 31.
    C. J. Mathias, M. J. Welch, M. A. Green, D. J. Perry, A. H. McGuire, X. Zhu, and J. M. Connett, Copper-PTSM measures tumor blood flow too!, J. Nucl. Med., 31: 909 (1990).Google Scholar
  32. 32.
    C. J. Mathias, W. H. Margenau, J. W. Brodack, M. J. Welch, and M. A. Green, A remote system for the synthesis of copper-62 labeled Cu(PTSM), Appl. Radiat. Isot.,in press.Google Scholar
  33. 33.
    Y. Fujibayashi, K. Matsumoto, J. Konishi, and A. Yokoyama, Generator-produced positron emitting Cu-62 labeled human serum albumin for plasma volume measurement. J. Nucl. Med., 29: 930 (1988).Google Scholar
  34. 34.
    C. J. Mathias, M. J. Welch, M. A. Green, H. Diril, C. F. Meares, R. J. Gropler, and S. R. Bergmann, In vivo comparison of copper blood pool agents: potential radiopharmaceuticals for use with copper-62. J. Nucl. Med.,in press.Google Scholar
  35. 35.
    Y. Fujibayashi, K. Matsumoto, Y. Yonekura, J. Konishi, and A. Yokoyama, A new zinc-62/ copper-62 generator as a source for PET radiopharmaceuticals, J. Nucl. Med., 30: 1838 (1989).PubMedGoogle Scholar
  36. 36.
    Y. Arano, Y. Magata, K. Horiuchi, K. Matsumoto, Y. Fujibayashi, Y. Ohmomo, C. Tanaka, H. Saji, and A. Yokoyama, Design, synthesis, and MCu labeling of fatty acid analogs containing dithiosemicarbazone chelate, Appl. Radiat. Isot., 40: 745 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Mark A. Green
    • 1
  1. 1.Division of Nuclear Pharmacy Department of Medicinal Chemistry and PharmacognosyPurdue UniversityWest LafayetteIndiana

Personalised recommendations